Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers

Jae-Do Kang, Hiroshi Tagawa

Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8603, Japan
Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan

A R T I C L E I N F O

Article history:
Received 3 July 2012
Revised 8 April 2013
Accepted 9 May 2013
Available online 14 June 2013

Keywords:
Passive control
Seesaw mechanism
Earthquake engineering
Energy dissipation
Fluid viscous dampers
Seismic protection

A B S T R A C T

This paper presents a new vibration control system based on a seesaw mechanism with fluid viscous dampers. The proposed vibration control system comprises three parts: brace, seesaw, and fluid viscous dampers (FVDs). In this system, only tensile force appears in bracing members. Consequently, the brace buckling problem is negligible. This benefit is useful for steel rods for bracing members. By introducing pre-tension in rods, long steel rods are applicable for bracing between the seesaw members and the moment frame connections over several stories. The relation between the frame displacement and the damper deformation is first derived in consideration of the rod deformation. Simplified analysis models of seesaw energy dissipation system are developed based on this relation. Subsequently, seismic response analyses are conducted for three-story and six-story steel moment frames with and without dampers. In addition to the proposed system, a diagonal-brace-FVD system and a chevron-brace-FVD system are analyzed for comparison. Parameter analyses of rod stiffness and damping coefficient are conducted for the six-story frame. The maximum story drift angle and response of the top floor displacement are discussed.

Results show a high capability of seesaw energy dissipation system for improving the structural response.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For the last few decades, energy dissipation systems have been used increasingly in new and retrofit construction to dissipate earthquake-induced energy into structures [1]. Various energy dissipation systems have been developed such as friction dampers, metallic dampers, viscoelastic dampers, and fluid viscous dampers. Such energy dissipation systems absorb seismic energy and enhance the seismic performance of structures by modifying the dynamic characteristics of a structure [2]. Several references have described the design and implementation of passive control in seismic protection [3–6].

Displacement-dependent passive dampers increase the lateral stiffness of the structure and provide energy dissipation through sliding friction or metallic yielding. During mild or moderate ground motion, however, the seismic energy is not dissipated, although the stiffness increases. Under large ground motions, the seismic performance is improved because of the added energy dissipation and the force-limiting characteristics of the damper [7]. Some researchers have investigated displacement-dependent dampers such as various friction devices [8–11], buckling-restrained braces [12,13], and U-shaped steel dampers [14,15].

The salient benefits of velocity-dependent dampers such as fluid viscous dampers (FVDs) and viscoelastic dampers (VEDs) are energy dissipation for all levels of vibration and flexibility in application. VEDs have been investigated extensively as passive dampers [16–21]. VEDs are comprised of some layers of viscoelastic material bonded with steel plates. The energy input to structures is absorbed through shear deformation of the viscoelastic material. Fluid viscous dampers (FVDs) consist of a cylinder and a stainless steel piston. The cylinder is filled with incompressible silicone fluid that has stable properties over a wide range of operating temperatures. Dampers are activated by the transfer, through small orifices, of silicone fluids between chambers at opposite ends of the unit [22]. FVDs can also be used in innovative configurations that amplify the velocity across the device, including toggle brace systems, scissor–jack systems, amplifying brace systems, and lever arm systems [1,23–25].

This study investigates passive vibration control system based on a seesaw mechanism using fluid viscous dampers (FVDs). In the proposed seesaw energy dissipation system (SEDS), only tension force is generated in bracing members. The brace buckling need not be considered. This paper first presents the relation between the frame displacement and the damper deformation obtained by considering the rod deformation. Based on this relation, simplified analysis models of seesaw energy dissipation system have been developed. Then, seismic response analyses are
conducted for three-story and six-story steel moment frames with and without dampers. In addition to the proposed system, the diagonal-brace-FVD system and the chevron-brace-FVD system are analyzed for comparison. Parameter analyses of rod stiffness and damping coefficient are conducted for the six-story frame. The maximum story drift angle, response of top floor displacement, base shear force, and peak acceleration are discussed. Results demonstrate the capability of seesaw energy dissipation system for improving structural response effectively.

2. Seesaw energy dissipation system (SEDS)

2.1. Fluid viscous dampers

Fluid viscous dampers (FVDs) include a piston head with orifices contained in a damper-housing filled with fluid, which is mostly a compound of silicone or a similar type of oil. Energy is dissipated in the damper as the piston rod moves through the fluid and forces the fluid to flow through the orifices in the piston head [26]. The force F_D in a FVD is calculated as

$$F_D = Cv^\gamma,$$

where F_D denotes the damper force, C represents the damping coefficient, v stands for the relative velocity between the ends of the damper, and γ signifies an exponent that controls the shape of the force velocity relation. The typical values of γ are between 0.5 and 2.0. FVDs with $\gamma > 1$ are generally not used in seismic design applications. Those with $\gamma < 1$ are called nonlinear FVDs [27]. For high-velocity applications, nonlinear FVDs are used to avoid exceeding the device force capacity. In these nonlinear FVDs, the force is a fractional power law of the velocity [28]. Those with $\gamma = 1$ are called linear FVDs, in which the damper force is proportional to the relative velocity. This study adopts linear FVDs.

2.2. Seesaw-brace systems

Kang and Tagawa proposed a vibration control system with long rods and seesaw mechanism [29,30]. Fig. 1 portrays the proposed vibration control system comprising a Brace, Seesaw, and FVDs. A couple of FVDs are installed in the seesaw member, which is pin-supported. The brace members comprise two tension rods, turnbuckles, and a cross-turnbuckle. Tension rods intersect from the edge of the seesaw member. By introducing pre-tension in rods, only tensile force appears in bracing members. Accordingly, the brace buckling problem is negligible, and steel rods are applicable as bracing between the seesaw member and the moment frame connections over some stories. When the frame deforms under a lateral load, the FVDs dissipate energy via movement of the piston through a highly viscous fluid. When the lateral load direction reverses, tensile axial force is generated immediately in the opposite rod. This behavior is based on the seesaw mechanism characteristics.

One benefit of this system is that it enables the long steel rods to be used as bracing between the seesaw member and the moment frame connections over some stories, as shown in Fig. 8d. Accordingly, one damping device mounted on ground level can control the frame vibration instead of mounting the damping device on every floor level. This advantage has been confirmed using an analytical approach [29,30].

3. Formulation of SEDS

3.1. Damper deformation

To consider rod deformation as shown in Fig. 2, the horizontal displacement δ of the frame is expressed as

$$\delta = \delta_t + \delta_b,$$

where δ_t signifies the horizontal displacement of the frame attributable to damper deformation, and δ_b stands for the horizontal displacement of the frame attributable to rod deformation.

The relation between the damper deformation (δ_D) and horizontal displacement (δ) of the frame has been obtained as [30]

$$\delta_D = \left(1 - \frac{\xi}{\cos \alpha} \right) \frac{\cos \gamma \cos \beta}{\sin (\alpha + \beta)} \delta,$$
where \(\alpha \) represents the horizontal angles of brace, and \(\beta \) denotes the angle between the connection member and center pin, and where \(\zeta \) signifies the rod deformation factor.

Constantinou et al. [1] discussed the relation between the story displacement of frame and damper displacement using a magnification factor of

\[
d = f \delta,
\]

where \(f \) represents the magnification factor: \(f = 1.0 \) for the chevron brace system and \(f = \cos \theta \) for the diagonal brace system where \(\theta \) is the angle of brace inclination. The toggle–brace system can give a value of \(f \) larger than unity.

When the brace is assumed to be rigid, considering Eq. (3), the magnification factor of the SEDS is expressed simply as

\[
f_R = \frac{\cos \alpha \cos \beta}{\sin(\alpha + \beta)}.
\]

Eqs. (3) and (5) give the relation of \(\delta_r = \delta_0 f_R \). Furthermore, \(\delta_B = \delta_0 \cos \alpha \), where \(\delta_B \) = rod deformation. Accordingly, considering Eq. (2), the damper deformation is expressed as

\[
\delta_D = f_R \delta - \frac{f_R}{\cos \alpha} \delta_B.
\]

Eq. (6) shows that the damper deformation decreases as the rod deformation increases.

The magnification factor of the seesaw system, which is related to the damping effect, has been discussed with numerical analysis results [30].

3.2. Simplified analysis model of SEDS

To analyze the proposed system as a simplified single-degree-of-freedom (SDOF) system with SEDS using FVDs, the horizontal stiffness and damping coefficient of a SEDS are needed. The SEDS can be described mathematically as a series of the spring–dashpot model, i.e. the Maxwell model, as presented in Fig. 3c. Displacements of the left and right damper can be assumed as equal if the seesaw member is sufficiently stiff. Furthermore, the rod axial force is assumed to maintain tension by introducing a proper

\[
\text{Table 1 Properties of the SDOF structure with SEDS.}
\]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>Width: 6000 mm, Height: 4000 mm, Mass: 100 ton, Natural period: 0.359 s</td>
</tr>
<tr>
<td>Exact model</td>
<td>Width of seesaw: 1600 mm, Height of seesaw: 580 mm, Rod stiffness: 35 kN/mm, Damping coefficient of FVDs: 5 kNs/mm</td>
</tr>
<tr>
<td>Equivalent Maxwell model</td>
<td>Rod stiffness: 38.67 kN/mm, Damping coefficient of FVDs: 6.27 kNs/mm</td>
</tr>
<tr>
<td>Generalized Kelvin model</td>
<td>Rod stiffness: 34.40 kN/mm, Damping coefficient of FVDs: 0.7 kNs/mm</td>
</tr>
</tbody>
</table>

Fig. 4. Time–history response of acceleration at the top floor of a single–story structure.
amount of pre-tension force. In this case, the exact model presented in Fig. 3a can be modeled using the simple model depicted in Fig. 3b. Considering the moment equilibrium around the seesaw pin, the following relation is obtained.

\[F_B = \frac{\cos \beta}{\sin(\alpha + \beta)} F_D \]

(7)

Therein, \(F_B \) is the rod force and \(F_D \) is the damper force, which are obtained respectively as

\[F_B = 2k_b \delta_b, \quad F_D = 2C_D \dot{\delta}_D, \]

(8a,b)

where \(k_b \) denotes the rod stiffness and \(C_D \) denotes the damper coefficient. The relation between the external horizontal force \(F \) and axial force \(F_B \) in the rod is

\[F = F_B \cos \alpha. \]

(9)

From Eqs. (6), (7), (8), and (9), the following relation is obtained.

\[\ddot{\delta} = \frac{F}{2C_{\text{el}B}} + \frac{F}{2k_b \cos \alpha} \]

(10)

Eq. (10) is the governing equation of the Maxwell model, as depicted in Fig. 3c. The equivalent rod stiffness \(k_{\text{eq}} \) and damping coefficient \(C_{\text{eq}} \) from Eq. (11) is definable as

\[k_{\text{eq}} = 2k_b \cos \alpha^2, \quad C_{\text{eq}} = 2C_D \dot{\delta}_D^2. \]

(11a,b)

To verify the equivalent rod stiffness and damping coefficient, the dynamic response analysis was conducted. A nonlinear dynamic analysis program: SNAP ver. 5 [31] was used for the dynamic response analysis in this study. Table 1 presents properties of the system used in the analysis. The frame response to the sine wave excitation with a frequency \(\omega = 6.28 \text{ rad/s} \) was analyzed. Fig. 4 shows the time-history response of acceleration for the exact and simplified models with dampers. This figure shows that the response of the equivalent Maxwell model agrees well with that of the exact model.

For further simplification, the Kelvin model is considered, as presented in Fig. 3d. In this model, the external force is expressed as

\[F = k_{\text{eq}} \dot{\delta} + C_{\text{eq}} \delta. \]

(12)

where \(k_{\text{eq}} \) and \(C_{\text{eq}} \) respectively represent the generalized system stiffness and the generalized damping coefficient. Based on the complex damping theory [32], they are definable as

\[k_{\text{eq}} = \frac{(k_{\text{eq}})(\omega C_{\text{eq}})^2}{(k_{\text{eq}})^2 + (\omega C_{\text{eq}})^2}, \quad C_{\text{eq}} = \frac{(k_{\text{eq}})^2 (C_{\text{eq}})}{(k_{\text{eq}})^2 + (\omega C_{\text{eq}})^2}. \]

(13)

where \(\omega \) is the frequency of the original structure. Fig. 4 shows that the response of the generalized Kelvin model also agrees well with that of the exact model. The equation of motion for the equivalent system, as presented in Fig. 5 is written as

\[m \ddot{x} + \left(C_{\text{frame}} + C_{\text{eq}} \right) x + \left(k_{\text{frame}} + k_{\text{eq}} \right) x = f(t). \]

(14)

where \(m \) denotes the mass, \(k_{\text{frame}} \) and \(C_{\text{frame}} \) respectively represent the stiffness and the damping coefficient of the frame, and \(f(t) \) signifies the external dynamic load.

4. Seismic responses of steel frames with SEDS

4.1. Design of the moment frame

A steel moment frame was designed to meet current Japan seismic code requirements for both strength and drift. Fig. 6a shows the steel moment frame without dampers, which consists of three bays and three stories. The steel sections of H-350 × 350 × 12 × 19 for columns and H-450 × 200 × 9 × 14 for beams are used. The yield strength of the steel material is assumed as 235 N/mm². The mass of each story is set as 70 tons. The story shear coefficient in the first story at the final stage of the nonlinear static pushover analysis was obtained as \(C_{\text{B}} = 0.378 \). Eigenvalue analysis provided the fundamental natural period as 1.23 s. Stiffness-proportional damping is considered with a 2% damping ratio for the first mode throughout this paper.
Table 2
Seismic ground motions used for analysis.

<table>
<thead>
<tr>
<th>Earthquakes (label)</th>
<th>Year</th>
<th>Peak ground velocity (PGV) (cm/s)</th>
<th>Peak ground acceleration (PGA) (cm/s²)</th>
<th>Duration (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Centro NS (ELC)</td>
<td>1940</td>
<td>50</td>
<td>510.8</td>
<td>30</td>
</tr>
<tr>
<td>Taft EW (TAF)</td>
<td>1952</td>
<td>50</td>
<td>496.9</td>
<td>30</td>
</tr>
<tr>
<td>Hachinohe NS (HAC)</td>
<td>1968</td>
<td>50</td>
<td>329.9</td>
<td>30</td>
</tr>
<tr>
<td>Kobe NS (KOB)</td>
<td>1995</td>
<td>50</td>
<td>499.9</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3
Analysis parameters.

<table>
<thead>
<tr>
<th>Story</th>
<th>Element</th>
<th>f_c (kN m)</th>
<th>f_y (kN m)</th>
<th>γ_1</th>
<th>γ_2</th>
<th>Hysteresis loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-story</td>
<td>Beam</td>
<td>383.13</td>
<td>387.00</td>
<td>0.99</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Column</td>
<td>586.08</td>
<td>592.00</td>
<td>0.99</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Six-story</td>
<td>Beam</td>
<td>685.33</td>
<td>692.25</td>
<td>0.99</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Column</td>
<td>1618.40</td>
<td>1634.75</td>
<td>0.99</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Modeling of SEDS: (a) details of SEDS and (b) analysis model.

Fig. 8. Analysis models with dampers: (a) bare frame, (b) Model DG, and (c) Model CV, and (d) Model SS.
Table 4
Analysis parameters.

<table>
<thead>
<tr>
<th>Story</th>
<th>Model</th>
<th>k_B (kN)</th>
<th>C_D (kN s/mm)</th>
<th>N</th>
<th>W_s (mm)</th>
<th>H_s (mm)</th>
<th>α (°)</th>
<th>β (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-story</td>
<td>DG</td>
<td>∞</td>
<td>1</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>∞</td>
<td>1</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>26.75</td>
<td>1</td>
<td>2</td>
<td>1600</td>
<td>580</td>
<td>49.37</td>
<td>19.93</td>
</tr>
<tr>
<td>Six-story</td>
<td>DG</td>
<td>∞</td>
<td>2</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>∞</td>
<td>2</td>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>35</td>
<td>2</td>
<td>2</td>
<td>4000</td>
<td>1000</td>
<td>54.11</td>
<td>14.07</td>
</tr>
</tbody>
</table>

k_B = rod stiffness, C_D = damping coefficient, N = number of dampers, W_s = width of seesaw, H_s = height of seesaw.

Fig. 9. Maximum story drift angle distribution: (a) El Centro 1940 NS, (b) Taft 1952 EW, (c) Hachinohe 1968 NS, and (d) Kobe 1995 NS.

Fig. 10. Time–history response of displacement at the top floor of Model BF and SS: (a) El Centro 1940 NS, (b) Taft 1952 EW, (c) Hachinohe 1968 NS, and (d) Kobe 1995 NS.
4.2. Earthquake ground motions

Four earthquake records were used as input ground motions: the 1940 El Centro earthquake record, the 1952 Taft earthquake record, the 1968 Hachinohe earthquake record, and the 1995 Japan Meteorological Agency (JMA) Kobe record. Seismic duration of 30 s was considered for all motions. These records used in the analysis were scaled so that the peak ground velocity was equal to 50 cm/s (Level 2). According to the Japanese seismic design standards for high-rise buildings, Level 2 corresponds to severe earthquakes of the maximum class that might occur in the future. The safety criterion at this level is that, although parts of the

<table>
<thead>
<tr>
<th>Input motion</th>
<th>Model</th>
<th>Without device (mm)</th>
<th>With device (mm)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Centro</td>
<td>DG</td>
<td>148.59</td>
<td>108.46</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>93.71</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>70.60</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Taft</td>
<td>DG</td>
<td>133.20</td>
<td>90.75</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>81.89</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>61.75</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Hachinohe</td>
<td>DG</td>
<td>109.05</td>
<td>76.02</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>67.12</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>43.29</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Kobe</td>
<td>DG</td>
<td>183.88</td>
<td>135.66</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>115.26</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>72.28</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Maximum displacement of the top floor of three-story structures.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact model</td>
<td></td>
</tr>
<tr>
<td>Width of seesaw</td>
<td>1600 mm</td>
</tr>
<tr>
<td>Height of seesaw</td>
<td>580 mm</td>
</tr>
<tr>
<td>Rod stiffness</td>
<td>26.75 kN/mm</td>
</tr>
<tr>
<td>Damping coefficient of FVDs</td>
<td>1 kN s/mm</td>
</tr>
<tr>
<td>Equivalent Maxwell model</td>
<td></td>
</tr>
<tr>
<td>Rod stiffness</td>
<td>22.69 kN/mm</td>
</tr>
<tr>
<td>Damping coefficient of FVDs</td>
<td>0.86 kN s/mm</td>
</tr>
<tr>
<td>Generalized Kelvin model</td>
<td></td>
</tr>
<tr>
<td>Rod stiffness</td>
<td>2.03 kN/mm</td>
</tr>
<tr>
<td>Damping coefficient of FVDs</td>
<td>0.78 kN s/mm</td>
</tr>
</tbody>
</table>

Table 6
Properties of the three-story structure with SEDS.

![Fig. 11. Plastic hinge formation under the Kobe earthquake: (a) bare frame, (b) Model DG, (c) Model CV, and (d) Model SS.](image)

![Fig. 12. Base shear force and peak acceleration of three-story structures.](image)
frame might enter the plastic region, excessively large deformation must be prevented. Table 2 shows the peak ground velocity (PGV) and peak ground acceleration (PGA) of the scaled motions.

4.3. Description of analysis models

The beams and columns were modeled using the beam element with plastic hinges at the member ends. The plastic moments at column and beam ends are presented in Table 3. Fig. 7a portrays the SEDS detail, which consists of FVDs, tension rods, and a pin-supported seesaw member. Fig. 7b shows the analysis model, in which some rigid truss members form both the seesaw member and the pin-support. The FVDs are modeled by the dashpot element. The rods are modeled using the elastic spring element. Analysis models of four types are considered. One is the bare frame (BF) without dampers, as described in Section 4.1. Others are frames with dampers, as presented in Fig. 8. The frames with the diagonal brace system (DG) and chevron brace system (CV) are equipped with linear FVDs attached with the rigid brace. For models DG and CV, damping devices are installed at all stories. In contrast, the frame with proposed system (SS) has one damping device on the ground level. Tension rods are connected to the top floor at the outside bay. Table 4 presents analysis parameters. To examine the effects of the damper installation method, the damping coefficient is set as the same value: $C_D = 1 \text{kN s/mm}$ for the three-story structure and $C_D = 2 \text{kN s/mm}$ for the six-story structure. The rods were modeled using the elastic spring element considering the high tensile strength steel as the material.

4.4. Seismic responses of the three-story structure

4.4.1. Maximum story drift angle

Fig. 9 depicts the maximum story drift angle distributions. The maximum story drift angles in Model SS are smaller than 0.01 rad.

![Graph](image1)

Fig. 13. Maximum story drift angles of three-story structures with exact model and simplified models of SEDS.

![Graph](image2)

Fig. 14. Variations of maximum story drift angle by rod stiffness and damping coefficient: (a) El Centro 1940 NS, (b) Taft 1952 EW, (c) Hachinohe 1968 NS, and (d) Kobe 1995 NS.
for all earthquakes. The peak of maximum story drift angles for Model DG are reduced by 17–38%. Those for Model CV are reduced by 35–47%. Those for Model SS are reduced by 49–65%. Moreover, the maximum story drift angle at the first floor of Model SS for Kobe earthquake is reduced about 70%. The reduction ratios of the story drift angles demonstrate the effectiveness of the SEDS in addition to requiring fewer dampers than other systems.

4.4.2. Time–history responses of displacement

Fig. 10 shows the respective time–history responses of displacement at the top floors of Models BF and SS. These figures reveal that the proposed system reduces the response displacement effectively. For the Kobe earthquake, the proposed system reduced the residual displacement observed at the final stage of analysis. Table 5 presents the maximum displacement of the top floor and the ratio of the value of the models with dampers to that of the model without dampers (BF).

4.4.3. Plastic hinge formation

Fig. 11 portrays the location of plastic hinges and shows their yield ratio at the final stage of seismic response analysis for Kobe earthquake. In the bare frame, the plastic hinges form at all beam-ends except for the top beams, and at the column-base in the first story. For Model DG, the number of forming plastic hinges did not decrease. For Model SS, however, both the number of plastic hinges and their yield ratios decreased.
4.4.4. Comparisons of base shear force and peak acceleration

Fig. 12a shows the maximum base shear force of each model under four earthquakes. It can be seen that the base shears of the frames with linear FVD (Model DG, CV, and SS) are smaller than that of the bare frame. The base shear of Model SS is the smallest among all models. Fig. 12b portrays peak acceleration for each model under four earthquakes. The peak accelerations of Model SS are the smallest in all cases except TAF 50.

4.4.5. Comparisons of exact model and simplified models of SEDS

To examine the applicability of the simplified models derived in Section 3, the analysis results of the exact model as shown Fig. 6d were compared with those of simplified models, which consist of the bare frame with a spring and a dashpot connected between top floor and ground (series or parallel). Table 6 presents properties of the system used in the analysis.

Fig. 13 portrays comparisons of maximum story drift angle of the three-story structure with exact model and simplified models.
Table 7
Maximum displacement of the top floor of six-story structures.

<table>
<thead>
<tr>
<th>Input motion</th>
<th>Model</th>
<th>Without device (mm)</th>
<th>With device (mm)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Centro</td>
<td>DG</td>
<td>208.32</td>
<td>178.13</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>155.56</td>
<td>75.75</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>106.37</td>
<td>53.18</td>
<td>0.50</td>
</tr>
<tr>
<td>Taft</td>
<td>DG</td>
<td>227.99</td>
<td>165.49</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>148.75</td>
<td>65.38</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>110.76</td>
<td>56.44</td>
<td>0.51</td>
</tr>
<tr>
<td>Hachinohe</td>
<td>DG</td>
<td>200.13</td>
<td>144.65</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>132.90</td>
<td>66.45</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>100.05</td>
<td>50.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Kobe</td>
<td>DG</td>
<td>254.30</td>
<td>191.32</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>CV</td>
<td>179.29</td>
<td>71.29</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>146.64</td>
<td>58.44</td>
<td>0.39</td>
</tr>
</tbody>
</table>

of SEDS under four ground motions presented in Table 2. The vertical axis represents the maximum story drift angles of the structures with simplified models of SEDS, and the horizontal axis signifies the maximum story drift angles of the structures with exact model of SEDS. This figure reveals that the response of the equivalent Maxwell model agrees well with that of the exact model, whereas the response of the generalized Kelvin model fluctuates within 10% of the exact model.

4.5. Seismic responses of six-story structure

4.5.1. Parameter analysis results

Fig. 14 depicts the maximum story drift angle for Model SS of the six-story structure. The values of rod stiffness \(k_S \) range from 15 kN/mm to 65 kN/mm and the values of damping coefficient \(c_D \) range from 0 kN s/mm to 10 kN s/mm. The model with a damping coefficient of zero is identical to the bare frame. Results of parameter analysis show that the maximum story drift angle is the smallest for \(c_D = 2 \) kN s/mm. For cases of \(c_D > 2 \) kN s/mm, the maximum story drift angle varies according to the rod stiffness. For the Kobe earthquake, in cases where \(c_D = 10 \) kN s/mm and the rod stiffness is small, the maximum story drift angle becomes very large, which reveals that the balance between the damping coefficient and rod stiffness is important in the design of the proposed system.

Fig. 15 portrays the effects of the rod stiffness and damping coefficient on the damper deformation for the El Centro and Kobe earthquakes. The damper deformation decreases as the damping coefficient decreases. The rod stiffness has little influence on the damper deformation.

Fig. 16 depicts the effects of rod stiffness and damping coefficient on the dissipated energy of FVDs for El Centro and Kobe earthquakes. When the damping coefficient range from 0 to 3 kN s/mm, the dissipated energy of FVDs increases as the damping coefficient increases. In the range of \(c_D > 3 \) kN s/mm, the dissipated energy decreases gradually as \(c_D \) increases. For cases where the rod stiffness is larger than 35 kN/mm, the rod stiffness has little influence on the dissipated energy of FVDs.

Fig. 17 shows the effects of rod stiffness and damping coefficient on the rod deformation for El Centro and Kobe earthquakes. The rod deformation increases as the damping coefficient increases for each value of rod stiffness. For each value of the damping coefficient, the rod deformation increases as the rod stiffness decreases.

From the parameter analysis results presented in Figs. 14–17, the value of \(c_D = 2 \) kN s/mm and \(k_S = 35 \) kN/mm are adopted for the seismic response analysis presented in the next section.

4.5.2. Seismic responses of six-story structure

Fig. 18 depicts the maximum story drift angle distributions. The maximum story drift angles of BF are larger than 0.01 rad for all earthquakes. In contrast, the maximum story drift angles of Model SS are smaller than 0.01 rad for all earthquakes. They are smallest among the models with dampers.

Fig. 19 shows time–history responses of displacement at the top floor of Model BF and Model SS. Displacement is reduced by implementing SEDS. For the Kobe earthquake, residual displacement at the final stage of analysis is reduced by the proposed system. Table 7 presents the maximum displacement of the top floor and the ratio of the value with dampers to that without dampers.

5. Conclusion

This paper presented a new vibration control system based on the seesaw mechanism with fluid viscous dampers. The proposed seesaw energy dissipation system (SEDS) comprises three parts: Brace, Seesaw, and Fluid viscous dampers (FVDs). By introducing pre-tension in rods, long steel rods are applicable as bracing and can be located over several stories as in the Model SS.

First, the simplified analysis models for SEDS were presented and evaluated. The results of dynamic response analysis reveal that the simplified analysis models are available for analysis of SDOF.

To confirm the applicability of SEDS, seismic response analyses were then conducted for three-story and six-story frames with an energy dissipation system. The diagonal-brace-FVD system and the chevron-brace-FVD system are also analyzed for comparison. The maximum story drift angle distributions, the time–history responses of displacement at the top floor, plastic hinge formation, base shear force, and peak acceleration were examined. The results of analyses demonstrated that the proposed system can reduce the seismic response of the frames effectively. Results show that the configuration method of the damping device influenced the damping effect. The analysis model in which the bracing members connect the proposed damping device at the ground level directly to the top story beams in the other bay exhibited the greatest reduction of deformation.

The parameter analyses related to the effect of rod stiffness and damping coefficient on the seismic response of the steel moment frames with SEDS using FVDs revealed that the important point in the design of this system is the balance between the damping coefficient and rod stiffness.

This paper presented the first report of an investigation into the potential of seesaw energy dissipation system with FVDs for the seismic protection of structures. The system configurations are preliminary concepts. Therefore, further experimental and analytical work is necessary to validate the results of the preliminary study.

One benefit of the proposed system is that it enables long steel rods to be used as bracing between the seesaw mechanism members and the moment frame connections over some stories.

References

