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a b s t r a c t

We study an (s, S) production–inventory system with an attached Markovian service
queue. A production facility gradually replenishes items in the inventory based on the (s, S)
scheme, and the production process is assumed to be a Poisson process. In addition to
the production–inventory system, c servers process customers that arrive in the system
according to the Poisson process. The service times are assumed to be independent and
identically distributed exponential random variables. The customers leave the systemwith
exactly one item at the service completion epochs. If an item is unavailable, the customers
cannot be served and must wait in the system. During this out-of-stock period, all newly
arriving customers are lost. A regenerative process is used to analyze the proposed model.
We show that the queue size and inventory level processes are independent in steady-
state, and we derive an explicit stationary joint probability in product form. Probabilistic
interpretations are presented for the inventory process. Finally, using mean performance
measures, we develop cost models and show numerical examples.

© 2015 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

We study an (s, S) production–inventory system with an attached M/M/c/∞ service queue. A production facility
gradually replenishes items in the inventory based on the (s, S) scheme, and the production process is assumed to be a
Poisson process. In the production–inventory system, c servers are assigned to serve customers that arrive in the system
according to the Poisson process. The service times are assumed to be independent and identically distributed (i.i.d.)
exponential randomvariables. The customers leave the systemwith exactly one item at the service completion epochs. If the
inventory level drops to zero, the remaining customersmustwait in the system to be served. During this out-of-stock period,
all arriving customers are lost. Inventory models with an attached service queue originated from an assembly-like queue
(or kitting queue) (Bozer & McGinnis, 1992; Bryznér & Johansson, 1995; Harrison, 1973; Lipper & Sengupta, 1986), where
several types of parts are simultaneously combined, and a positive processing time is incurred only after all the types are
gathered. Sigman and Simchi-Levi (1992) conducted the first extensive study on an inventorymodelwith an attached service
queue. Using a light traffic heuristic for anM/G/1 queue with limited inventory, they provided a closed-form expression for
the average delay in terms of basic system parameters. Even though previous studies presented various mean performance
measures for inventory models with an attached service queue, research on the joint probability of the queue length and
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inventory level was rare, even in simple cases, because of the analytic difficulty due to strict dependency between the queue
length and inventory processes.

Schwarz and Daduna (2006) and Schwarz, Sauer, Daduna, Kulik, and Szekli (2006) conducted extensive research on the
joint probability of the M/M/1 service queue with an attached inventory controlled by various policies with exponential
lead time and backordering. An inventory model with a service queue and lost sales was also studied by Saffari, Haji, and
Hassanzadeh (2011). The previous models derived the stationary joint probabilities of the queue length and inventory level
in product form, which implied that the inventory process is independent of the queue length process in steady-state. Re-
cently, the (s, S) production–inventorymodelwith anM/M/1 service queuewas studied by Krishnamoorthy andViswanath
(2013) where the inventory items were gradually replenished by an internal production process instead of being instantly
supplied with the lead time. In this paper, the inventory model with single server queue, proposed by Krishnamoorthy and
Viswanath (2013), is extended to themulti-server case. The purposes of our research are to obtain an explicit stationary joint
probability in product form using a regenerative method and to provide the probabilistic interpretations of the probability.

Krishnamoorthy and Viswanath (2013) applied a matrix theoretic approach to derive the stationary joint distribution to
efficiently and computationally analyze the system. Using this approach, they obtained comprehensive performance mea-
sures and a cost model; however, they showed no probabilistic interpretation of the inventory process. Saffari, Asmussen,
and Haji (2013) employed a regenerative process to analyze an inventory queue with a service queue to facilitate more
stochastic interpretations. They considered an (r,Q ) inventory model with an attachedM/M/1 service queue, general lead
times, and lost sales. Deviating from Krishnamoorthy and Viswanath (2013), they proved that the inventory level process
was independent of the queue length process in steady-state and derived the stationary joint probability. It is important
to note that the method used by Saffari et al. (2013) ultimately led to separate analyses of the inventory and queue length
processes. Using a similar methodology, Baek and Moon (2014) introduced an extended model called the (r,Q ) produc-
tion–inventory system with an attached service queue. In this proposed model, items were assumed to be stocked by both
an outside supplier and internal production.

In this paper, we use a regenerative process for the analysis. Our proposedmethod allows formore probabilistic interpre-
tations of the proposed model. First, we prove the independence between the queue length process and the inventory level
process of the proposed model. Later, the queue length process and inventory level process are separately analyzed. For the
analysis of the queue length and inventory level processes, the traditional M/M/c/∞ and M/M/1/K queues are applied
to derive the stationary probabilities. Furthermore, we discuss the applicability of the proposed method to other produc-
tion–inventory models with a Markovian service queue and lost sales. Finally, we conclude that the steady-state inventory
level process becomes identical to the process described by Krishnamoorthy and Viswanath (2013), and we determine the
optimal conditions of the proposed model for each of the decision variables s and S.

The remainder of this paper is organized as follows. In Section 2, we introduce the proposed model in more detail and
show the preliminary results. In Section 3, we analyze the proposed model, and in Section 4, we present a cost model and
optimal conditions for selecting decision values s and S. We also compare the proposed cost function with the cost function
of Krishnamoorthy and Viswanath (2013). Finally, conclusions are discussed in Section 5.

2. Preliminaries

In this section, we introduce the proposed model and review the busy period queue length formula for the M/M/1/K
system, which plays an important role in the analysis.

2.1. The model

We study an M/M/c/∞ service queue with an attached production–inventory system and lost sales as shown in Fig. 1.
There are c servers dedicated to serving customers one by one under the first-come, first-served (FCFS) discipline. The
waiting room for customers is unlimited, and the size of the inventory is S. Customers arrive in the system according to
a Poisson process with rate λ. During the period when there are items, arriving customers join the queue; however, all
customers that arrive during an out-of-stock period are lost. The service times are assumed to be i.i.d. exponential random
variables with mean 1/µ, and we assume λ < cµ for the ergodicity of the queue. A customer leaves the system with
exactly one item from the inventory at his service completion epoch. When the inventory level reaches zero, the remaining
customers in the system wait until the inventory is replenished.

Fig. 2 shows the sample path of the proposedmodel when S = 6 and s = 4. LetN(t) and J(t) be the number of customers
and inventory level at time t , respectively.

The inventory items are gradually replenished by an internal production facility that is controlled by the (s, S) policy;
specifically, the production facility is turned off as soon as the inventory level becomes S and reactivated if the level drops to
s. In this way, the system alternates between a production period and a non-production period; the lengths of these periods
are denoted by LP and LN , respectively. We assume that the internal production process follows a Poisson process with rate
η. For analytic convenience, we assume that η ≠ λ. In the lower part of Fig. 2, it is easy to see that LN is the first passage
time to level s from level S, and LP is the first passage time to level S from level s.

Note that the queue length and the on-hand inventory processes are completely dependent; however, the inventory level
process behaves like a regenerative process, where all of the non-production period starting points are the regeneration
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Fig. 1. M/M/c/∞ queue with the production–inventory system.

Fig. 2. Sample path of the proposed model.

points. This concept of the regenerative process plays an important role in obtaining the stationary joint probability of
the number of customers and the on-hand inventory level and its stochastic interpretation. Later, we will show that the
queue length process and inventory level process are independent in steady-state. The length from a starting point of a
non-production period to the end of an ensuing production period is a cycle denoted by C . It follows that C = LN + LP .

2.2. The busy period queue length formula for the M/M/1/K queue

The inventory level process during a production period is reminiscent of a finite capacity queueing system. In fact, in
Section 3, wewill prove that the inventory level process is stochastically identical to the conventionalM/M/1/K queuewith
s initial customers and upper absorbing boundary S. Therefore, the busy period queue length probability of the traditional
M/M/1/K queue plays an important role in our analysis. This section is based on results fromSrivastava andKashyap (1982),
Takács (1962), and Takagi and Tarabia (2009).

Consider an M/M/1/K queue with arrival rate λ, service rate µ, and system capacity K . Let N∗(t) be the number of
customers at time t . We define the following probability:

p(i)(k, t|λ, µ, K) = Pr{N∗(t) = k, 0 < N∗(t) ≤ K for 0 ≤ u ≤ t|N∗(0) = i}, 1 ≤ k ≤ K ,

and the following Laplace transform (LT) and its generating function (GF):

P∗

(i)(k, θ |λ, µ, K) =


∞

t=0
e−θ t

· p(i)(k, t|λ, µ, K)dt, P̃∗

(i)(z, θ |λ, µ) =

S
k=1

zk · P∗

(i)(k, θ |λ, µ, K).

Using results from Srivastava and Kashyap (1982) and Takagi and Tarabia (2009), we have

P̃∗

(i)(z, θ |λ, µ, K) =
z i+1

+ λzK+1(1 − z)P∗

(i)(K , θ |λ, µ, K) − zµP∗

(i)(1, θ |λ, µ, K)

θz − (µ − λz)(1 − z)
, (1)
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where

P∗

(i)(K , θ |λ, µ, K) =


β∗(θ |λ, µ)

i
−

α∗(θ |λ, µ)

i
λ ·


β∗(θ |λ, µ)

K
·

β∗(θ |λ, µ) − 1


+

α∗(θ |λ, µ)

K
·

1 − α∗(θ |λ, µ)

 , (2)

P∗

(i)(1, θ |λ, µ, K) =


λ

µ

−i

·


β∗(θ |λ, µ)

K−i
·

β∗(θ |λ, µ) − 1


+

α∗(θ |λ, µ)

K−i
·

1 − α∗(θ |λ, µ)


µ ·


β∗(θ |λ, µ)

K
·

β∗(θ |λ, µ) − 1


+

α∗(θ |λ, µ)

K
·

1 − α∗(θ |λ, µ)

 , (3)

and

α∗(θ |λ, µ) =
θ + λ + µ −


(θ + λ + µ)2 − 4λµ

2λ
, (4)

β∗(θ |λ, µ) =
θ + λ + µ +


(θ + λ + µ)2 − 4λµ

2λ
. (5)

Remark 2.1. Note that (1) corrects the error in Takagi and Tarabia (2009).

Remark 2.2. Note that p(i)(k, t|λ, µ, K) is the probability that k customers exist in the system at time t during a busy period.
Therefore, P∗

(i)(k, θ |λ, µ, K)|θ=0 =


∞

t=0 p(i)(k, t|λ, µ, K)dt denotes the expected total sojourn time in level k during a busy
period under the condition that the busy period startswith i initial customers. This expected sojourn time plays an important
role in analyzing the production period.

2.3. Notation

Throughout this paper, we use the following notation:
S, s: decision variables, (0 ≤ s ≤ S − 1),
LN : the length of a non-production period, (random variable),
LP : the length of a production period, (random variable),
C = LN + LP : length of a cycle, i.e., the length of time between two successive non-production period starting points,
(random variable),
N(t): the number of customers in the queue at time t , (N(t) ≥ 0),
J(t): the level of the on-hand inventory (number of items) at time t , (0 ≤ J(t) ≤ S),
N = limt→∞ N(t), J = limt→∞ J(t),
P(n) = limt→∞ Pr[N(t) = n] = Pr(N = n), (n ≥ 0),
χ(k) = limt→∞ Pr[J(t) = k] = Pr(J = k), (0 ≤ k ≤ S).

3. Analysis

In this section, we derive the joint distribution of the number of customers and inventory level at an arbitrary time in
steady-state. First, we define the joint probability

Ψ̃ (n, k, t|n0, k0) = Pr[N(t) = n, J(t) = k|N(0) = n0, J(0) = k0], t ≥ 0, n, n0 ≥ 0, and 0 ≤ k, k0 ≤ S,

and the limiting probability,

Ψ̃ (n, k) = lim
t→∞

Ψ̃ (n, k, t|n0, k0), (6)

where the effect of the initial conditions has faded away.
We begin the analysis with the proof of independence between N(t) and J(t) in steady-state. If these two random

variables are independent, the stationary joint probability can be written as

Ψ̃ (n, k) = P(n) · χ(k), n, k ≥ 0. (7)

For the proposed queue with the production–inventory system described in Section 2, we assume an outside auxiliary
inventory supplier provides one item instantaneously to the inventory as soon as the stock level becomes zero. This system
with the auxiliary supply is called an M/M/c/∞ queue with an (s, S) production–inventory system under the instant
auxiliary supply.

Remark 3.1. Toprevent confusion, andwithout loss of generality,we refer to the proposedmodel in Section 2 as the ‘original
system’ and the above model with instant auxiliary supply as the ‘modified system’.

Lemma 3.1. In steady-state, the queue length process of the modified system is stochastically equivalent to the conventional
M/M/c/∞ queue. Moreover, the queue length process is independent of the on-hand inventory process.
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Proof. In the modified system, because of the instant auxiliary supply, no sales are lost, and there are no service inter-
ruptions. Therefore, the queue length process behaves identically to the traditional M/M/c/∞ queue, which proves the
equivalence between the two queue length processes.

Now, we note that the inventory level at time t only depends on the internal production process of the inventory items
and the departure process of the queue during the time interval (0, t]. By assumption, the internal production process is
independent of the queue length process. In addition, in steady-state, departure processes of customers in the modified
system follow a Poisson process with rate λ, irrespective of the number of customers in the system; thus, the independence
between queue length and inventory level processes is proved. �

Using Lemma 3.1, we then have the following theorem.

Theorem 3.1. In steady-state, the queue length process of the original system, i.e., the proposed system in Section2, is independent
of the inventory level processes. In this case, the stationary joint probability Ψ̃ (n, k) of the original system is written as

Ψ̃ (n, k) = PM/M/c/∞(n) · χ(k), n, k ≥ 0, (8)

where PM/M/c/∞(n) is the stationary queue length probability of the conventional M/M/c/∞ queue, which is given by

PM/M/c/∞(0) =


c−1
k=0

ak

k!
+

ac

c!
·

1
1 − ρ

−1

,


ρ =

λ

cµ
, a =

λ

µ


, (9)

and

PM/M/c/∞(n) =


(cρ)n

n!
· PM/M/c/∞(0), (1 ≤ n ≤ c − 1),

(cρ)c

c!
· ρn−c

· PM/M/c/∞(0), (n ≥ c).
(10)

Proof. Consider an ‘excised system’ of the original systemwhere all the queue and inventory processes during out-of-stock
periods are removed and the remainders are chronologically connected. In the excised system, one inventory item is in-
stantaneously supplied as soon as the inventory level depletes to 0. Then, it is clear that the excised system is stochastically
identical to the modified system in Lemma 3.1. Therefore, under the condition that the inventory level is positive, the sta-
tionary queue length distribution is independent of the inventory process and identical to the distribution of the traditional
M/M/c/∞ queue by Lemma 3.1.

Next, we investigate the stochastic behavior during out-of-stock periods. Since all out-of-stock periods are i.i.d. expo-
nential random variables with mean 1/η, we only need to find the queue length probability at a start of an out-of-stock
period. In the original system, it is clear that the queue length at a start of an out-of-stock period is the same as the queue
length at the end of the out-of-stock period. Here, the end of an out-of-stock period in the original system corresponds to
a time point in the modified system at which one item is replenished by the auxiliary supply. Therefore, we can directly
apply Lemma 3.1 to conclude that the stationary queue length probability at the start of an arbitrary out-of-stock period is
independent of the inventory level and equivalent to the ordinaryM/M/c/∞ queue. This completes the proof. �

Remark 3.2. We note that the inventory level and the queue length processes stay frozen during the stock-out periods. This
is whywe can apply the ‘modified system’ for the proof of Theorem 3.1.Without the lost sales assumption, themethodology
used in Theorem 3.1 is no longer available.

Remark 3.3. If c = 1 in (8)–(10), the same result obtained by Krishnamoorthy and Viswanath (2013) can be obtained.
Moreover, taking c → ∞, the result for anM/M/∞ service queue can be obtained.

Remark 3.4. Theorem 3.1 is one of the main results in this paper. Note that we only use the output process of the service
queue and the production process in the proof. Therefore, it is not difficult to infer that this approach can be applied to any
type of Markovian service queue with an attached production–inventory system and lost sales as long as all of the out-of-
stock periods are i.i.d. and the output process of the service queue follows a Poisson process under the condition that the
inventory level is positive.

Remark 3.5. Because of the proof of independence between the queue and inventory level processes, we can directly use
the stationary inventory level probability from previous research, if it exists. We will show in the following sections that
the stationary inventory level process of the proposed model is stochastically identical to traditional (s, S) inventory model
(without service queue) (Altiok, 1989). This is another significant implication of Theorem 3.1.

Using (8), the expected number E(N) of customers in the system is given as

E(N) =

∞
n=0

S
k=0

n · Ψ̃ (n, k) =

∞
n=0

n · PM/M/c/∞(n) =
(cρ)c

c!
·

ρ

(1 − ρ)2
· PM/M/c/∞(0) +

λ

µ
, (11)

where ρ = λ/(c · µ) and PM/M/c/∞(0) are given in (9).
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3.1. Analysis of the inventory level process

In this section, we derive the probability χ(k) of the inventory level at an arbitrary time in steady-state to completely
determine Ψ̃ (n, k). For (s, S)-inventory system, Altiok (1989) derived the inventory level probability in a recursive form. The
recursive solution is useful for a computational purpose. However, it is not efficient for probabilistic interpretation. Here,
conditioning on the state of the production facility, we derive the probability χ(k) in a closed-form.We define the indicator
function ξ(t) as

ξ(t) =


0, if a system is in a non-production period,
1, if a system is in a production period.

We also define the following probabilities:

χN(k, t) = Pr[J(t) = k, ξ(t) = 0], k = s + 1, s + 2, . . . , S,
χP(k, t) = Pr[J(t) = k, ξ(t) = 1], k = 0, 1, . . . , S − 1,

and their steady-state probabilities,

χN(k) = lim
t→∞

χN(k, t), k = s + 1, s + 2, . . . , S,

χP(k) = lim
t→∞

χP(k, t), k = 0, 1, . . . , S − 1.

Thus, we obtain

χ(k) = χN(k) + χP(k), k = 0, 1, 2, . . . , S. (12)

3.1.1. Analysis of the non-production period
In this section, we derive the probability χN(k) of the inventory level at an arbitrary time during a non-production period

in steady-state. Note that the departure process of customers in the service queue is a Poisson process with rate λ in steady-
state, if the inventory level is positive. Also, note that the output process of the inventory items is probabilistically identical
to the departure process of the customers. Therefore, all of the state sojourn times in the non-production period are i.i.d.
exponential random variables withmean 1/λ in steady-state. Since the non-production period starts with S inventory items
and proceeds until the level becomes s, the expected length E(LN) of a non-production period is

E(LN) =
S − s

λ
. (13)

The above equation implies

χN(k) =
E(LN)

E(C)
·

1
λ

E(LN)
=

1
λE(C)

, (k = s + 1, s + 2, . . . , S). (14)

3.1.2. Analysis of the production period
In this section, we derive the probability χP(k) of the inventory level at an arbitrary time during a production period in

steady-state. To find the probability, we use a dual inventory level process because the busy period queue length probability
of the traditionalM/M/1/K queue can be used efficiently for the analysis. The dual inventory level process is defined by

J∗
= {J∗(t), t ≥ 0} = {S − J(t), t ≥ 0},

and the following probability and generating function (GF) are defined by

χdual
P (k) = lim

t→∞
Pr[J∗(t) = k, ξ(t) = 1], k = 1, . . . , S,

χ̃dual
P (z) =

S
k=1

zk · χdual
P (k).

Note that the dual process always starts with (S−s) initial items because every production period starts with s inventory
items. Also, if the inventory level is positive, the output process of the items is a Poisson process with rate λ in steady-state
by Theorem 3.1. Thus, it is not difficult to show that the dual process is stochastically identical to the busy period of the
ordinary M/M/1/K queue with arrival rate λ, service rate η, (S − s) initial customers, and system capacity S. Let T dual

P (k)
be the total sojourn time in level k of the dual inventory process during a production period in steady-state. Eq. (1) and
Remark 2.2 imply
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E(Lp) =

S
k=1

E

T dual
P (k)


= P̃∗

(S−s)(z, θ |λ, η, S)|z=1,θ=0 =

S
k=1


∞

t=0
p(S−s)(k, t|λ, η, S)dt

=
S − s
η − λ

−


λ/η

s+1
·


1 −


λ/η

S−s


η ·

1 −


λ/η

2 . (15)

Remark 3.6. Using results from Takagi and Tarabia (2009), it can be shown that E(Lp) is equivalent to the expected busy
period length of the ordinaryM/M/1/K queue starting with (S − s) initial customers with system capacity S.

Eqs. (13) and (15) are used to obtain the following expected length E(C) of a cycle:

E(C) = E(LN) + E(LP) =
1

λ

1 −

λ
η


S − s −


λ
η

s+2
·


1 −


λ
η

S−s



1 −

λ
η


 . (16)

We then have the following theorem.

Theorem 3.2. Defining TP(k) as the total sojourn time in inventory level k during a production period of the original inventory
process, it follows that E


TP(k)


= E


T dual
P (S − k)


and

χp(k) =
E

TP(k)


E(C)

=
E

T dual
P (S − k)


E(C)

=



λ/η

s−k
−

λ/η

S−k

E(C) · (η − λ)
, k = 0, 1, . . . , s,

1 −

λ/η

S−k

E(C) · (η − λ)
, k = s + 1, s + 2 . . . , S − 1.

(17)

Proof. The dual inventory process during a production period is stochastically identical to the busy period of the traditional
M/M/1/K queue with arrival rate λ, service rate η, (S − s) initial customers, and system capacity S. It follows from (1)–(5)
and Remark 2.2 that

χ̃dual
P (z) =

E(LP)
E(C)

·
P∗

(S−s)(k, θ |λ, η, S)|θ=0

E(LP)

=

z ·

zS−s
− 1 +

λ(z−1)zS


λ
η

s
−


λ
η

S
η−λ


E(C)(1 − z)(η − zλ)

=
1

E(C)(η − λ)


S−s
k=1

zk −

S
k=1


λ

η
· z
k

+ zS−s
·

s
k=1


λ

η
· z
k


. (18)

Using the definition of the GF χ̃dual
P (z), we have

χdual
P (k) =

E(LP)
E(C)

·
E

T dual
P (k)


E(LP)

=


1 −


λ/η

k
E(C)(η − λ)

, k = 1, 2, . . . , S − s − 1,
λ/η

k−(S−s)
−

λ/η

k
E(C)(η − λ)

, k = S − s, S − s + 1, . . . , S,

(19)

and the proof is complete. �

Then, using (14) and (17) in (12), we obtain the stationary probability χ(k) of the on-hand inventory level.

Remark 3.7. Using algebra, it can be shown that the stationary probabilityχ(k) of the inventory level is completely identical
to the traditional (s, S) inventory model with lost sales (Altiok, 1989). Hence, we can infer that the stationary inventory
process of the proposed model is stochastically identical to the traditional model with no service queue.
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Using (12)–(14), (16), and (17), the expected inventory level E(J) of the system is given by

E(J) =

∞
n=0

S
k=0

k · Ψ̃ (n, k) =

S
k=1

k · χ(k) =
2 −

(S−s)(S+s+3)
λE(C)

2


λ
η

− 1
 . (20)

4. Cost models and numerical examples

In this section, we develop a cost functionwith themachine reactivation level s and inventory size S. We consider a linear
cost function EC1(s, S) with the following cost factors:

(a) Holding cost (Cinv): cost spent to keep an item in the system per unit time,
(b) Starting cost (K̃ ): fixed cost spent to turn on the production machine (a cost spent once in a cycle),
(c) Shortage cost (Closs): cost incurred by the loss of a customer,
(d) Production cost (Crp): cost of production per unit time per item,
(e) Waiting cost (Cwait ): cost per unit time per customer incurred by a customer waiting during an out-of-stock period.

The average operating cost EC1(s, S) per unit time is given by

EC1(s, S) = Cinv · E(J) + Crp · η ·
E(Lp)
E(C)

+ Closs · λ · χ(0) + Cwait · E(N) · χ(0) +
K̃

E(C)

= Cinv · E(J) + Crp · η ·
E(Lp)
E(C)

+ λ ·


Closs + Cwait ·

E(N)

λ


· χ(0) +

K̃
E(C)

. (21)

Eq. (21) is used to examine the effect of customer waiting time costs during an out-of-stock period (the fourth term
Cwait · E(N) ·χ(0) in the first equality). Hence, if Cwait = 0, the cost function EC1(s, S) becomes the same as the cost function
of Krishnamoorthy and Viswanath in Krishnamoorthy and Viswanath (2013). Here, note that Cwait · E(N) plays the role of a
constant coefficient in the cost function with respect to the decision variables s and S. Therefore, the proposed cost function
has the same properties as the cost function of Krishnamoorthy and Viswanath (2013); thus, we can use all of the results and
properties therein for our cost analysis. Readers are referenced to Krishnamoorthy and Viswanath (2013) for more details
on the convexity nature of (s, S)-inventory system.

Let σ =
λ
η
and C̃∗

loss =


Closs + Cwait ·

E(N)

λ


. Using Lemma 3.3.1 and 3.3.2 in Krishnamoorthy and Viswanath (2013), the

optimal conditions that the optimal values S∗ and s∗ satisfy can be obtained.

(1) The optimal condition for S∗:
σ S∗

+2 log(σ ) − σ + 1


λ(σ − 1)2E(C)


Cinv

(S∗
− s)(S∗

+ s + 3)
2(σ − 1)

+ η(S∗
− s)(Crp − C̃∗

loss) − λK̃


−


Cinv

(2S∗
+ 3)

2(σ − 1)
+ η(Crp − C̃∗

loss)


= 0. (22)

(2) The optimal condition for s∗ for fixed S:
σ s∗+2 log(σ ) − σ + 1


λ(σ − 1)2E(C)


Cinv

(S − s∗)(S + s∗ + 3)
2(σ − 1)

+ η(S − s∗)(Crp − C̃∗

loss) − λK̃


−


Cinv

(2s∗ + 3)
2(σ − 1)

+ η(Crp − C̃∗

loss)


= 0. (23)

Since S∗ and s∗ are real numbers, nearby integer numbers can be used to find the optimal values and optimal cost.
For fixed s, (a) and (b) in Table 1 show the convex nature of the cost function EC1(s, S) with respect to S. To compare

our results to those of Krishnamoorthy and Viswanath (2013), we use the same parameter settings. The expected costs with
zero waiting cost (Cwait = 0) are obviously the same as those of Krishnamoorthy and Viswanath (2013) as shown in Table 1.
Furthermore, the optimal inventory size is S∗

= 16, irrespective of Cwait , because the waiting cost Cwait · E(N) plays the role
of a constant in the cost function. In Table 2, (a) and (b) show the cost function EC1(s, S) with respect to s for fixed S. We
obtain the same result as Krishnamoorthy and Viswanath (2013) when Cwait = 0 as shown in Table 2. Furthermore, Fig. 3
shows graphical representation of the convexity nature of cost function EC1(s, S) under various parameter settings.

To examine the effect of the number of servers, we consider another cost function defined by

EC2(s, S, c) = EC1(s, S) + c · CServer , (24)

where CServer is the per unit time per server cost for the service queue operation.
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Table 1
Effect of the inventory storage size S on the cost function with respect to changes in Cwait and the fixed parameters c = 1, s = 10, λ = 2, µ = 3, Cinv =

50, Crp = 200, Closs = 400, and K̃ = 2000.

S (a) η = 3 (b) η = 1.5
Cwait = 0 Cwait = 100 Cwait = 200 Cwait = 0 Cwait = 100 Cwait = 200

12 1249.17 1252.46 1255.76 653.954 705.349 756.745
13 1126.85 1129.81 1132.77 647.502 698.685 749.869
14 1077.09 1079.76 1082.43 645.182 696.178 747.175
15 1056.5 1058.92 1061.35 644.433 695.268 746.103
16 1050.61 1052.82 1055.03 644.398 695.094 745.789
17 1053.2 1055.22 1057.24 644.708 695.284 745.859
18 1061.14 1063 1064.85 645.178 695.652 746.126
19 1072.69 1074.4 1076.11 645.71 696.098 746.487
20 1086.8 1088.38 1089.96 646.248 696.565 746.882
21 1102.79 1104.26 1105.73 646.763 697.02 747.278
50 1759.68 1760.12 1760.55 649.994 699.994 749.994

Table 2
Effect of the machine reactivation level of inventory s on the cost function with respect to changes in cw and the fixed parameters c = 1, S = 15, λ =

2, µ = 3, Cinv = 50, Crp = 200, Closs = 400, and K̃ = 2000.

s (a) η = 2.5 (b) η = 1.5
Cwait = 0 Cwait = 100 Cwait = 200 Cwait = 0 Cwait = 100 Cwait = 200

2 827.3 836.0 844.7 639.7 691.5 743.2
3 842.4 849.7 857.0 639.9 691.5 743.1
4 861.1 867.2 873.3 640.3 691.7 743.2
5 883.0 888.1 893.3 640.7 692.0 743.4
6 908.1 912.5 916.9 641.2 692.5 743.7
7 936.9 940.7 944.4 641.8 693.0 744.1
8 970.1 973.3 976.5 642.6 693.6 744.6
9 1009.0 1011.8 1014.6 643.4 694.4 745.3

10 1056.5 1058.9 1061.4 644.4 695.3 746.1
12 1208.1 1210.0 1211.8 647.3 698.0 748.6

(a) Effect of S on EC1(s, S) when s = 5. (b) Effect of s on EC1(s, S) when S = 20.

Fig. 3. Expected costs EC1(s, S) with respect to changes in ρ =
λ
µ

under fixed parameters µ = 3, η = 5, Cinv = 1, Closs = 200, Cwait = 100, K̃ =

100, Crp = 10.

The following table shows the optimal number c∗ that minimizes EC2(s, S, c) for given (s, S). For the cost EC2(s, S, c), we
consider two cases, where the underlined values are the minimum costs for each case (see Table 3).

To determine the effect of the number of servers c on the expected cost EC2(s, S, c), we change the number of servers
c under the condition that the other parameters are fixed. The results are shown in Fig. 4. For fixed s and S, EC1(s, S) is
non-increasing as c increases because E(N) is non-increasing with respect to c and converges to the expected number of
customers for theM/M/∞queue, i.e., E(N) =

λ
µ−λ

when c = 1 and λ
µ
when c → ∞. On the other hand, the server operating

cost c · CServer increases as c increases. Therefore, EC2(s, S, c) has a convex nature with respect to c as shown in Fig. 4.
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Fig. 4. Effect of the number of servers c on the expected cost under fixed parameters s = 5, S = 20, λ = 12.5, µ = 3, η = 5, Cinv = 1, Closs = 200, Cwait =

100, K̃ = 100, Crp = 10, and CServer = 15.

Table 3
Expected costs EC2(s, S, c) with respect to changes in λ and c under fixed parameters s = 10, S = 16, µ = 3, Cinv = 50, Closs = 400, Cwait = 200, K̃ =

2000, Crp = 200, and CServer = 15.

c Case 1 (η = 3) Case 2 (η = 1.5)
λ λ

2.5 12.5 22.5 32.5 2.5 12.5 22.5 32.5

1 872.539 – – – 1189.71 – – –
2 874.669 – – – 885.246 – – –
3 889.176 – – – 888.011 – – –
4 904.114 – – – 901.467 – – –
5 919.106 5595.43 – – 916.262 6060.88 – –
6 934.105 5252.13 – – 931.237 5661 – –
7 949.105 5189.84 – – 946.235 5586.51 – –
8 964.105 5181.03 – – 961.234 5573.94 – –
9 979.105 5188.06 10284 – 976.234 5579.71 10713.8 –

10 994.105 5200.38 10017.1 – 991.234 5591.6 10425.3 –
11 1009.1 5214.5 9937.99 – 1006.23 5605.59 10338.9 –
12 1024.1 5229.23 9915.36 – 1021.23 5620.28 10313.4 –
13 1039.1 5244.15 9914.4 14959.1 1036.23 5635.19 10311.2 15376.4
14 1054.1 5259.13 9922.55 14754.5 1051.23 5650.16 10318.8 15160.6
15 1069.1 5274.12 9934.65 14678.2 1066.23 5665.15 10330.7 15079.6
16 1084.1 5289.12 9948.45 14650.9 1081.23 5680.15 10344.4 15050.3
17 1099.1 5304.12 9962.98 14645.6 1096.23 5695.15 10358.9 15043.9
18 1114.1 5319.12 9977.8 14650.7 1111.23 5710.15 10373.7 15048.5
19 1129.1 5334.12 9992.73 14660.9 1126.23 5725.15 10388.6 15058.4
20 1144.1 5349.12 10007.7 14673.6 1141.23 5740.15 10403.6 15071.1

5. Conclusion

In this paper, we studied (s, S) production–inventory systemswith an attachedM/M/c/∞ service queue.We proved the
independence between the inventory level and queue length processes and derived the explicit stationary joint probability
in product form. Using the independence property, we separately analyzed the queue length probability and inventory level
processes. For the inventory level probability, the concepts of the regenerative process and the traditionalM/M/1/K model
were successfully applied, and we showed probabilistic interpretations for the proposed model using these results. We also
discussed the applicability of our methodology to other production–inventory models with a Markovian service queue and
lost sales. We showed the optimal conditions for each of the decision variables s and S. Furthermore, numerical examples
were presented to find the optimal cost with respect to each of the decision variables.

We anticipate that the transient analysis of the proposed model will be completely different from the steady-state anal-
ysis because the queue length process is completely dependent on the inventory level process. In this situation, all the argu-
ments used in this paper cannot be applied. Hence, the transient analysis of the proposedmodel is a topic of future research.

Currently, we assume inventory items are discrete. However, in real-world systems such as large-scale chemical plants,
inventory may be continuous. Furthermore, in recently focused additive manufacturing systems and three-dimensional
printing technologies, a product is made from uncountable materials such as polymer andmetal powders. Therefore, a con-
tinuous inventory control model with an attached service queue is a challenging extension of the proposed model.
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