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Highly predictivemultivariate calibrationmodel depends on samples in training set. In this study, we introduced
an outlier detection method and developed its improvement for shorter run time. ImprovedMonte-Carlo outlier
detection (IMCOD) was proposed to establish cross-prediction models for determining normal samples, which
were subsequently used to analyze the distribution of prediction errors for all of dubious samples together.
Four real datasets were employed to illustrate and validate the performance of IMCOD. After sample selection
for training set of NIR of soy flour samples, the Root Mean Square Error of Prediction (RMSEP) of PLS model de-
creased from 1.4811 to 0.7650. This method benefits the establishment of a good model for QSAR and NIR
datasets.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The performance ofmultivariate calibrationmodel depends on sam-
ples in the training set. Due to the recordingmistakes or influence from
exceptional circumstances, some spectra might be different from the
majority when analyzing real samples. Sample selection is therefore
an important step to identify and subsequently eliminate atypical
observations from the training set [1]. For multivariate modeling, the
outlier detectionmethods contain statistical andmodel basedmethods.
Statistical methods were designed according to the distribution in high
dimensional sample space to detect the observations relatively far
from the center of the data distribution [2]. Multivariate location and
covariance estimation were calculated by data matrix (X) such as
Mahalanobis distance (MD), Minimum Covariance Determinant
(MCD) [3], Minimum Volume Ellipsoid (MVE) [4], ellipsoidal multivar-
iate trimming (MVT) [5], resampling byhalf-means (RHM) and smallest
half volume (SHV) [6], S-estimators [7], CM-estimators [8], τ-estimators
[9], MM-estimators [10], estimators based on multivariate ranks or
stitute, Chinese Academy of
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signs [11], and depth-based estimators [12]. The key to these methods
is to find out the main body of an observation matrix and identify the
outliers significantly different from themajority of the training set [13].

Model basedmethods analyzed the distribution in high dimensional
model space and negative influence from the outliers significantly dif-
ferent from the majority of the training set. As a classic model based
method, Monte-Carlo outlier detection (MCOD) method was proposed
to detect three kinds of outliers by establishing many cross-prediction
models [14–15]. In MCOD, the dataset was randomly divided into train-
ing and testing sets, which were used to establish and validate predic-
tive model, respectively. Since the majority of training set were
normal samples, the X outlier far from the center of the sample space
are considerably variable by Monte-Carlo sampling subset predictive
models while predicting the y outlier is usually difficult [13–14]. In
this case, the distribution, mean value and standard deviation of predic-
tive errors could be employed to detect outlier. However, multiple out-
liers distort measures of central location and dispersion of models or
samples, making the inaccurate results were obtained when there are
multiple outliers in the data. This phenomenon is termed the masking
effect. To overcome the masking effect and obtain the clear boundary
between normal and abnormal samples, we proposed a new strategy,
termed as enhanced MCOD (EMCOD), to detect outliers using MCOD
to firstly determine normal samples and then individually identify the
dubious samples [13]. After validation by one simulated and three real
datasets, the results indicated that EMCOD could effectively detect
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Fig. 1. Flow chart for improved Monte-Carlo outlier detection.
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outliers and improve the performance of predictive models. However,
the run time of EMCOD significantly increases for big data such as NIR
data. Sometimes, the run time might need several hours, which is not
acceptable for analysts. Therefore, it is necessary to develop more ad-
vanced method of outlier detection.

The aim of this study is (1) to improve the EMCODmethod by taking
the dubious samples as testing set in the model population, and (2) to
introduce improved Monte-Carlo outlier detection (IMCOD) method
to detect the potential outliers for establishing a highly predictive
multivariate model.

2. Theories and methods

2.1 Datasets

Four public available datasets were used to illustrate and validate
our method.

Dataset 1: stack loss plant dataset for oxidation of ammonia to nitric
acid, provides operational data of a plant, which includes 21 obser-
vations on three independent variables (cooling air flow, cooling
water inlet temperature and acid concentration) and a dependent
variable of stack loss [16–17]. Among all the samples, the outliers
are Nos. 1, 3, 4 and 21, and No. 2 is a good leverage point.

Dataset 2: Hawkins–Bradu–Kass data, is another classic dataset for
outlier detection and robust regression. The first 14 observations
out of 75 are outliers of this dataset [18].
Dataset 3: Oil contents of soybean [19]. This dataset consists of 54
soy flour samples measured on NIR spectrometers. The spectra
were recorded at 175 wavelength channels from 1104 to 2496 nm
with an interval of 8 nm. Oil content values determined by Soxhlet
extraction were used as responses. The oil contents of the first four
samples were deliberately changed to make them as outlier.
Dataset 4: Boiling point of diesel fuels. The dataset includes 246 sam-
ples, whichweremeasured at 401wavelength channels from 750 to
1550nmwith 2 nm intervals. The boilingpointwasmeasured at 50%
recovery (BP50). This dataset is freely available at http://www.
eigenvector.com/data/SWRI/index.html.

2.2 Enhanced Monte-Carlo outlier detection

Drawing inspiration from ensemble learning, Monte-Carlo outlier
detection (MCOD)methodwas proposed bymultiple learning to obtain
the distribution of prediction errors of each sample [14–15]. The de-
tailed algorithmwas described elsewhere [14]. Herein, the main proce-
dures of this method were introduced as follows: (1) determine
number of principal components by cross-validation; (2) divide ran-
domly the whole dataset into training and validation sets, which were
used to build a prediction model and obtain the prediction errors for
samples in test set; (3) repeat (2) for N times; (4) mean value (MV)
and standard deviation (STD) of the prediction errors were employed
to diagnose outliers. Generally, the predictive errors of a y outlier have
a large mean value, while an X outlier (good leverage point) possesses
a small mean value of predictive residuals but a large STD. Intuitively,
the MV/STD plot provides visual diagnosis for outlier [14–15].

To overcome the masking effect, an enhanced Monte-Carlo outlier
detection (EMCOD) method was recently proposed [13]. Due to the
masking effect, the boundary of outliers and normal samples was hard
to be determined. However, the samples with the smallest MV and
STD of prediction errors are easily determined to be normal samples.
Therefore, the core idea of EMCOD is to use the strategy of ‘Let One In’
to diagnose the dubious samples one by one. Firstly, using the MV/STD
plot in MCOD, the samples with the smallest MV and STD of prediction
errors were selected as determinate normal samples and determine the
remaining as dubious samples. Each dubious sample was extracted to
form new dataset with determinate normal samples. Then, the MCOD
was conducted to obtain the predictive errors of the current dubious
sample. Finally, MV and STD of the predictive errors of the dubious
samples were used to diagnose outliers. The detailed algorithm was
described elsewhere [13].

 

 

2.3 Improved Monte-Carlo outlier detection

To overcome the masking effect, the dubious samples were checked
by EMCOD method one by one. However, along with increase of sam-
ples, the run time of EMCOD significantly increases. Especially, for NIR
data of more than 200 samples, the run time of EMCOD sometimes re-
searches to several hours, which is not acceptable for outlier detection.
Therefore, improved Monte-Carlo outlier detection (IMCOD) was con-
ducted in this study. As shown in Fig. 1, the procedures of IMCOD con-
tain the following steps: (1) As the same as EMCOD, the samples with
the smallest MV and STD of prediction errors were selected as determi-
nate normal samples (Ns) and determine the remaining as dubious
samples (Ds); (3) randomly divide Ns into training and test sets;
(4) build the multivariate model to predict the samples in the test set
and Ds to obtain the prediction errors; (5) after N cycles, MV and STD
of predictive errors on the dubious samples and also normal samples
were used to diagnose outliers. In theory, EMCOD needs to conduct
MCOD procedures once for all samples and Ds times for the data of
Ns + 1 samples; while IMCOD runsMCOD procedures once for all sam-
ples and once for the data of Ns determinate normal samples. Obviously,
compared with EMCOD, the run time of IMCOD significantly decreases
to less than 2 times of MCOD procedures once for all samples.
2.4 Data processing and analysis

All programs used were coded in MATLAB 2015a for Windows and
all calculations were carried out on a personal computer.
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3. Results and discussion

3.1 Improvement for EMCOD

Outlier detection is important to establish a high-performance
model. MOCD was recently proposed to detect outliers by establishing
many predictive models and analyzing a MV/STD plot of prediction er-
rors. EMCODwasdeveloped a strategy of ‘Let One In’ to diagnose thedu-
bious samples one by one for obtaining the visualized boundary
between normal and abnormal samples. Herein, we develop improved
Monte-Carlo outlier detection for shorter run time. To illustrate our
method, Dataset 1 and Dataset 2 were used.

Dataset 1 is the stack loss dataset of a plant. In MCOD, the number
(N) of Monte-Carlo models and sampling ratio are set to 10,000 and
Fig. 2. Improved Monte-Carlo outlier detection mean/standard deviat
0.8, respectively. The MV/STD plot of the prediction errors for 21 sam-
ples was shown in Ref. [13]. To obtain a clearer result using relatively
short run time, IMOCD was proposed and employed to detect outliers
in this dataset. As shown in Fig. 2A, the samples including 20, 5, 16,
18, 19, 13, 14, 8, 15, 10, and 17 were normal samples (green square),
which had the smallest mean and STD values. We established MC pre-
diction models using these 11 samples and used these models to ob-
serve other samples. The number (N) of Monte-Carlo models and
sampling ratio are also set to 10,000 and 0.8, respectively. According
to the hypothesis that the models built with merely normal samples
provide lower prediction errors for normal samples but higher predic-
tion errors for outliers, the distances between normal samples and out-
liers should be longer. Then, whether selection of the determinate
normal samples influences outlier detection was investigated. For

 

 

ion plot of prediction errors for (A) Dataset 1 and (B) Dataset 2.  
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Dataset 1, the threshold of average of prediction errors was set to 3.0,
while the one of STDvaluewas 1.2. From Fig. S1, whatever the threshold
was set, normal samples appear at the same region of determinate
normal samples in the MV/STD plot, even though they are regarded as
dubious samples. The results indicate that the threshold does not
influence the outlier detection. The result is shown in Fig. 2A, which
illustrates that IMCOD has a better result since the outliers have
correctly been detected.

Dataset 2 represents the Hawkins–Bradu–Kass data. As shown
on the right of Fig. 2b, the M/SD plot indicates that 14 samples
(Nos. 1–14) are outliers. 52 samples with the lowest standard devia-
tions of prediction errors (b0.5) were selected as normal samples.
Other 23 samples were then detected and tested one by one by the
Fig. 3.Mean/standard deviation plot of prediction errors for Dataset 3: (A) Monte-
MC prediction models of the dataset established with the 52 samples.
As shown on the left hand of Fig. 2B, the prediction errors of 9 normal
samples decrease and the prediction errors of 14 outliers greatly in-
crease. The distances between normal samples and outliers significantly
increase.

Compared with EMCOD, all dubious samples could be predicted
together but not one by one. Therefore, the run time significantly
decreases.

3.2 Method validation

To validate our method, Dataset 3 was used, which consisted of 54
soy flour samples measured on NIR spectrometers. The oil contents of

 

 

Carlo outlier detection (left) and (B) improved Monte-Carlo outlier detection. 
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first 4 samples were deliberately changed to make them as outlier.
MCOD was initially conducted to detect the outliers.

As shown in Fig. 3A, 4 outliers have a clear tendency to separate from
the majority of training set. Theoretically, the y outliers have large
prediction errors, while X outliers (good leverage point) have large
STD values [13–15]. In IMCOD, the MVs and STDs of prediction errors
were used to determine 38 samples with the smallest MVs (b2.0) and
STDs (b0.6). When the number (N) of Monte-Carlo models and
sampling ratio are respectively set to 5000 and 0.8, the MVs and STDs
of prediction errors could be used to diagnose outliers. From Fig. 3B,
except the first 4 samples, 6 samples (Nos. 13, 40, 44, 50, 51 and 54)
were also separated from the majority of training set. The PLS models
built by all samples were comparedwith those built by normal samples.
Fig. 4. (A) Mean/standard deviation plot of prediction errors for Dataset 4: improved Monte
number of samples.
The 5 fold cross validation was used to evaluate the performance of PLS
models. The results showed that, when the first 4 samples were re-
moved, the Root Mean Square Error of Prediction (RMSEP) decreased
from 1.4811 to 0.8397. Obviously, after outliers were removed, the
accuracy of the model significantly improved.

Dataset 4 is boiling point of diesel fuels. InMCOD, the number (N) of
Monte-Carlo models and sampling ratio is set to 5000 and 0.8, respec-
tively. 157 samples with the smallest MVs (b10.0) and STDs (b1.5)
were selected and employed to diagnose potential outliers. We
established MC prediction models using these 157 samples and
used these models to predict other samples. The number (N) of
Monte-Carlomodels and sampling ratio are also set to 5 000 and 0.8, re-
spectively. The MV/STD plot of the prediction errors for 246 samples

 

 

-Carlo outlier detection; (B) RMSEP of multivariate model after removing the different
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was shown on Fig. 4. As shown in Fig. 4A, since the number of samples is
large, it is still hard to obtain clear separation between normal samples
and potential outliers. In this case, we investigate the number of re-
moved samples to RMSEP of themultivariatemodel after potential sam-
ples were removed. According to the mean value of predictive errors,
one more potential outlier was removed in each cycle. Monte-Carlo
cross validation was used to evaluate the multivariate model [20]. As
shown in Fig. 4B, when the number of removed samples reaches to
64, the lowest RMSEP was achieved.

Compared with EMCOD, IMCOD just needs 6.4 min, which is signif-
icantly less than EMCOD of more than 3 h. With the help of IMCOD,
182 samples with the smallest MV and STD of prediction errors could
be selected and employed to build PLS model for boiling point of diesel
fuels. The Monte-Carlo cross validation indicates that the RMSEP
decreases to 2.674 and Q2 increases to 0.968.

4. Conclusion

In this study, we improved EMCOD method for short run time. In
IMCOD, normal samples were employed to build multiple multivariate
models, while the dubious samples were taken as test set. Therefore,
since the MCOD was just conducted to the whole dataset and normal
samples, the run time of IMCOD significantly decreases. Moreover,
IMCOD is not susceptible to the threshold for selecting the determinate
normal samples. Four datasets were employed to illustrate and validate
our method. The results indicated that IMCOD could save computation
time and improve the performance ofmultivariatemodel by diagnosing
and removing outliers.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2015.12.006.
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