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The clustering problem has been studied by many researchers using various approaches, including tabu
searching, genetic algorithms, simulated annealing, ant colonies, a hybridized approach, and artificial bee
colonies. However, almost none of these approaches have employed the pure particle swarm optimiza-
tion (PSO) technique. This study presents a new PSO approach to the clustering problem that is effective,

robust, comparatively efficient, easy-to-tune and applicable when the number of clusters is either known
or unknown. The algorithm was tested using two artificial and five real data sets. The results show that
the algorithm can successfully solve both clustering problems with both known and unknown numbers

of clusters.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering groups objects in a given dataset with respect to sim-
ilarities between these objects. In fact, this clustering problem
must often be solved as part of more complicated tasks in pattern
recognition, image analysis and other fields of science and engi-
neering (Zhang, Ouyang, & Ning, 2010). The similarity criteria used
in clustering vary from author to author. However, most of the
similarity criterion functions are non-convex and nonlinear such
that the resulting clustering problem may have local minimum
solutions. Moreover, they show exponential complexity in terms
of the number of clusters, and thus, the clustering problem is
NP-hard when number of clusters exceeds three (Welch, 1982).

A survey of relevant literature shows many studies on cluster-
ing. However, heuristic approaches have become more appropriate
to solving large-size problems when the clustering problem be-
comes NP-hard. Thus, the majority of prior studies cover heuristics.
Some related studies include tabu searching (Al-Sultan, 1995), ge-
netic algorithms (Jiang, Wang, Chu, & Yu, 1997; Krishna & Murty,
1999; Murthy & Chowdhury, 1996), simulated annealing (Maulik
& Mukhopadhyay, 2010; Selim & Al-Sultan, 1991; Sun, Xie, Song,
Wang, & Yu, 1994), ant colonies (Shelokar, Jayaraman, & Kulkarni,
2004), a hybridized approach (Kao, Zahara, & Kao, 2008), and arti-
ficial bee colonies (Zhang et al., 2010). However, very few of those
approaches have employed particle swarm optimization (PSO).
Although Kao et al. (2008) used PSO in their study, it was not a
pure PSO approach. They developed a hybrid technique combining
PSO, Nelder-Mead simplex searching and K-means algorithm. Here
we present a pure PSO approach to clustering that is efficient,
effective, robust and easy to tune as compared to other methods.

* Tel.: +90 212 560 82 60; fax: +90 212 590 40 00.
E-mail address: tunchan@istanbul.edu.tr

0957-4174/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.07.123

The K-means algorithm (Kaufman & Rousseeuw, 1990) is a well-
known approach to clustering. Its popularity depends on its sim-
plicity and computational efficiency. However, that approach tends
to fixate on local optima near the initial cluster centers, which are
assigned randomly. Thus, many researchers have presented heuris-
tic clustering algorithms to overcome this problem (Zhang et al.,
2010).

Maulik and Bandyopadhyay (2002) proposed a genetic algo-
rithm approach to clustering. They tested the algorithm on syn-
thetic and real-life datasets to evaluate its performance. Another
genetic algorithm approach called the genetic K-means algorithm
was presented by Krishna and Murty (1999); they defined a basic
mutation operator specific to clustering.

Selim and Al-Sultan (1991) presented a simulated annealing ap-
proach to the clustering problem and theoretically proved that a
clustering problem’s global optimum solution can be reached.
Maulik and Mukhopadhyay (2010) also presented a simulated
annealing approach to clustering. They combined their heuristic
with artificial neural networks to improve solution quality. Differ-
ent from widely-known methods, they preferred to use a similarity
criterion function called the XB cluster validity index. Sung and Jin
(2000) proposed a tabu search-based heuristic to clustering. They
combined two procedures, namely, packing and releasing, using
the tabu search algorithm.

Shelokar et al. (2004) presented an ant colony optimization
(ACO) method for clustering. Their algorithm employs distributed
agents that mimic the way real-life ants find the shortest path from
their nest to a food source and back. Researchers tested the algo-
rithm on several simulated and real datasets and showed that
the algorithm performed quite well.

Kao et al. (2008) proposed a hybridized approach that combines
the K-means algorithm, Nelder-Mead simplex search and PSO
technique. The authors used the K-means algorithm alone to
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generate one particle in the initial population. They set the popu-
lation size to 3m + 1, where m is the number of attributes that ob-
jects have. At each iteration, they implemented a Nelder-Mead
search only on the best m + 1 particles, and then the rest of the
population was moved toward the best particle of the whole pop-
ulation and toward the best neighbor.

Lastly, Zhang et al. (2010) presented the artificial bee colony
(ABC) as a state-of-the-art approach to clustering. To tackle infea-
sible solutions, they adopted Deb’s constrained handling method
(Goldberg & Deb, 1991) instead of the greedy selection process
usually used in the ABC algorithm. When they tested their algo-
rithm, they found very encouraging results in terms of effective-
ness and efficiency.

The rest of the paper is organized as follows. Section 2 describes
the clustering problem. Section 3 briefly defines the PSO technique.
Section 4 presents the proposed PSO approach. Section 5 provides
the experimental results, and Section 6 concludes the paper.

2. The clustering problem

As briefly mentioned above, clustering involves gathering simi-
lar objects in the same cluster. Thus, a similarity metric between
two objects must first be defined. Most researchers have used
Euclidean distance for that purpose, which is derived from the
Minkowski metric and is defined as (Zhang et al., 2010):

m
> (05 —oy)”
j=1

where D(0;,0) is a function that yields a dissimilarity measure be-
tween object i and object I, and o; (i=1,...,n and j=1,...,m) de-
notes the value of jth attribute of object i. Thus, the number of
objects in the dataset and the number of attributes an object has
are denoted by n and m, respectively. The goal of a clustering algo-
rithm is to determine a partition G = {C;,GCy,...,Cx|Vk : C, # 0 and
Vh #k: C,n Cp= 0} such that objects that belong to the same clus-
ter are as similar to each other as possible, while objects that belong
to different clusters are as dissimilar as possible. To achieve this
clustering goal, a measure of adequacy with respect to the partition
must be defined (Zhang et al., 2010). Using the above notation, con-
sider a given dataset of n objects in m dimensional space to be par-
titioned into K clusters. Thus, the mathematical formulation of the
clustering problem can be described as follows (Shelokar et al.,
2004):
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where z, denotes the center of cluster k; z is an average of the jth
attribute values of all objects in cluster k; wy, € {0,1} denotes that
object i belongs to cluster k if wy =1 (otherwise wy, = 0). Assuming
that t indicates the iteration number, wj can be calculated as
follows:

w1 ifk= argmin,_; _D(0;,z5")
ik 0 otherwise '
=1,...,K (5)

i=1,...,n k

According to Eq. (5), we assign each object to the nearest cluster
center out of the all cluster centers that were updated at iteration
t — 1 using Eq. (6). This equation also guarantees that the constraint

given in Eq. (3) is satisfied. Thus, the center of each cluster at iter-
ation t can be obtained as follows:

D1 Wi 0i ;
zkj ﬁ k=1,...,K,j=1,...,m (6)

3. The PSO technique

PSO is a heuristic technique recently introduced by Kennedy
and Eberhart (1995). It is one of the latest evolutionary and popu-
lation-based optimization algorithms, which can simulate bird
flocking or fish schooling behavior. PSO searches for the optimum
solution in the search space. However, this search process is not
carried out entirely randomly. A problem-specific fitness function
is employed to determine the next search step.

In the PSO algorithm, each individual in the population is called
a particle and is subject to move in the search space. In addition,
each particle is a candidate solution. Particles have memory, and
thus, they retain part of their previous state. There is no restriction
that particles share the same point in the search space, but their
individuality is preserved. Each particle’s movement is the compo-
sition of a velocity and two randomly-weighted influences. The
two randomly-weight influences are individuality, or the tendency
to return to its best previous position, and sociality, or the ten-
dency to move towards its neighborhood’s best previous position.

When compared to many of the other population-based ap-
proaches such as other well-known genetic algorithms, the conver-
gence rate of the population is much slower for PSO (Kao et al.,
2008). Thus, there is no need for any extra mechanism, such as
the mutation operator in genetic algorithms, to diversify different
areas of the search space.

4. Proposed PSO approach

As mentioned above, particles continuously move to search for
better solutions, and movement depends on various topologies.
This study follows the so-called “gbest neighborhood topology” de-
scribed by Kennedy, Eberhart, and Shi (2001), according to which
each particle remembers its best previous position and the best
previous position visited by any particle in the whole swarm. In
other words, a particle moves towards its best previous position
and towards the best particle.

Let there be K x m dimensions, each representing an attribute
value of a given center of a given cluster for each particle. This
method will organize the swarm in this study, if two modifications
are employed. First, each particle includes a variable that repre-
sents the number of clusters denoted by K, (p=1,...,P), where P
is the number of particles in the swarm. Second, each particle in-
cludes variables, each of which represents an attribute value of a
given center of a given cluster denoted by zij. Thus, the number
of dimensions that particle p has will be K, x m + 1.

4.1. Fitness function

Kennedy and Eberhart (1995) suggested a fitness value associ-
ated with each particle. Thus, a particle moves in the solution space
with respect to its previous position when it has met the best fit-
ness value and the neighbor’s previous position when the neighbor
has met the best fitness value. In this study, the fitness function is
defined as:

Ky n
= 0 - Z szk O“zp[ (7)
k=1 i=1
where f} is the fitness value of particle p at iteration t. Note that the
vast majority of previous studies have assumed that the number of
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clusters are given in the problem. In that case, the number of the
clusters, for all of the particles, would be the same, that is, equal
to the given number of clusters. Thus, Ky =K; = - - - = K,. However,
this study presents an algorithm that can also be employed for a
clustering problem in which the number of clusters is unknown.
In that case, we suggest using the following fitness function:

fi = 0, ~minD (! ) ®

Note that when partitioning is compact and satisfactory, the va-
lue of ¢!, should be low, while min,.D(z}’,2") should be high,
thereby yielding a lower values from the fitness function.

At each one of the iterations, a particle’s personal best position
and the best neighbor in the swarm are updated if an improvement
in any of the best fitness values is observed.

4.2. Moving a particle

According to gbest neighborhood topology, a particle moves to-
wards its best position and towards the best neighbor in the
swarm. Indeed, this movement depends on its current velocity,
which is defined as:

UKy = kG, + on (GKy — K ) + @ (GKp — K 9)
”Zijm — vzﬁf + (ngj - zﬁf ) + W, (Gz(,jj - zﬁ}) (10)

where both w; and w, are uniform random numbers between zero
and two, and b is the best particle in the swarm. vK;, and vz;; denote
velocities of particle p on dimension K and on dimension z, respec-
tively. GK;, and Gzij denote the memorized best positions of particle
p on dimension K and on dimension z,, respectively. Because both
of the best solutions, that is, a particle’s memorized best solution
and the best solution of the swarm, can possibly have different
numbers of clusters, we suggest using the nearest clusters of the
best solutions for velocity calculations. Thus, d denotes the index
number of a given best solution’s cluster, that is, the nearest cluster
to the center z}', which is computed as follows:

9= argminD(sz’,zﬁ‘) or 9=argminD(Gz},2}) (11)

I=1,...GKp

As seen in Eq. (9), 111(2” will always be zero if the number of
clusters is known (that is, GK, = GK, = K;,) because initial veloci-
ties are set to zero in this study. Thus, particle p moves at iteration
t+1 as follows:

K, = max (round(yK;f1 + Ki,), 1> (12)
= v 4 2 (13)

After moving particle p on dimension K, we suggest moving
only one randomly-selected cluster center of current solution. In
other words, in Eq. (13), k is a uniform random integer between
one and K,. However, before moving cluster centers, new cluster
centers must be enlarged or some of the existing centers must be
removed from the current solution for particle p if K" # K., sim-
ilar to the method proposed by Maulik and Mukhopadhyay (2010).

In the case in which I<;” < K;, we suggest identifying the small-
est cluster and deleting its center from configuration. The cluster-
removing operation shown in Fig. 1 is repeated until K;“ = K;. To
identify the smallest cluster, the size S}’ of each cluster k is com-
puted as follows:

SE=>"wh k=1, K, (14)
i=1

In the case in which K;™' > K}, we suggest splitting the biggest
cluster according to Eq. (14) into two new clusters and repeating
that splitting operation until K:,” = K:,. To split the biggest cluster,
first its range is identified by finding the maximum and minimum
values for each attribute, and then new cluster centers are deter-
mined randomly within that range. Fig. 2 shows the algorithm
for the splitting operation.

4.3. Satisfying constraints

As we discussed previously, each particle would have been
repositioned in K, x m + 1 dimensional search space at the end of

delete z2

K, = K,—1

x = Find the smallest cluster of particle p using Eq. (14)

Assign each object to the nearest cluster // see Eq. (5)

Fig. 1. Removing procedure.

identify the range of cluster x

for eachj=1tom

P _
Zy; =

End for
add new cluster ¢

foreachj=1tom

End for
K, = K, +1

x = Find the biggest cluster of particle p using Eq. (14)

random number within the range

zf;j = random number within the range

Assign each object to the nearest cluster // see Eq. (5)

Fig. 2. The splitting procedure.
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any iteration. We know that particles represent candidate solu-
tions, and each particle must be feasible and satisfy Eqgs. (3) and
(4). However, as mentioned in Section 2, Eq. (5) guarantees that
Eq. (3) is satisfied. Thus, we only need to focus on satisfying Eq.
(4). In other words, we must make sure that at least one object be-
longs to each cluster of a given solution. Therefore, solutions that
include empty clusters are not feasible. To address infeasible solu-
tions, we adopted Deb’s constraint handling method as per Zhang
et al. (2010). According to that method, we can determine the
choosing process between solutions a and b as follows:

(1) If infeasibility, < infeasibility, then a is better than b
(2) If infeasibility, = infeasibility, and fitness, < fitness, then a is
better than b

where infeasibility, is the number of empty clusters of solution a,
and fitness, is the objective function value for solution a, which is
given in Eq. (2).

In summary, the PSO heuristic used for clustering in this study
is shown in Fig. 3.

4.4. Parameter tuning

The proposed PSO heuristic is very easy to tune because there
are only two parameters used, namely, population size P and max-

imum iteration count itermax. To determine appropriate parameter
settings, we generated two artificial problems that were used to
test the ant colony approach of Shelokar et al. (2004) using a ran-
dom number generator that produced a Gaussian distributed set of
objects. In the first problem, the dataset (K) is composed of three
clusters with 50 objects in each cluster. The data was generated
using means pq =[3,0], u2 =[0,3] and p3=[1.5,2.5] and variances
21=10.3,1], 22 =[1,0.5], 43 =[2,1]. In the second problem, the data-
set (K) is composed of six clusters with 25 objects in each cluster.
The data was generated using means pu; =[3,0], i =[0,3], ps =
[1.5,2.5], ua=10.2,0.1], us=1[1.2,0.8], us=[0.1,1.1] and variances
/1] = [03,1], )»2 = [1,05], ),3 = [2,1], 14 = [003,]], ),5 = [2,05], 25 =
[0.2,0.4].

Four levels for each parameter were selected. For each instance
and each level, we ran the algorithm five times. We used the rela-
tive increase given in Eq. (15) to select the proper values from the
parameter levels. Table 1 shows the parameter levels and selected
values.

Table 1
Parameter levels and selected values for PSO heuristic.

Selected value

P 50, 100, 250, 500 250
itermax mx5,mx15 mx 20, mx 25 mx 15

Parameter Considered levels

t=0
forp=1toP

randomly generate initial particle p

calculate f,, using Eq. (7) or Eq. (8)

end for

while 7 < itermax

t=t+1

forp=1to P

while K} < Kj™*

call removing procedure
end while
while K > K"

call splitting procedure // see Fig. 2
end while
k = random integer between 1 and Klf

forj=1tom

end for

calculate f, using Eq. (7) or Eq. (8)

end for

end while

assign each object to the nearest cluster of particle p // see Eq. (5)

update cluster centers of particle p // see Eq. (6)

particle p memorizes the initial position as the best

find the best particle of the swarm with respect to Deb’ s rule

move particle p on dimension K // see Eq. (12)

/I see Fig. 1

move particle p on dimension z; // see Eq. (13)

assign each object to the nearest cluster of particle p // see Eq. (5)

update cluster centers of particle p // see Eq. (6)

if the current position is better than the memorized position with respect to Deb’ s rule then
particle p memorizes current position as the best

Fig. 3. PSO heuristic for clustering.
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__mean — Best
~ Best
where Best is the minimum objective function value among all runs,

and mean is the average objective function value of five runs. Final-
ly, meantime is the average computation time for five runs.

X meantime (15)

5. Experimental results

In this section, we present the results obtained when searching
for the solution of the problem formulated in Egs. (1)-(6). The PSO
approach presented in this study was compared to well-known
algorithms, namely, the ACO proposed by Shelokar et al. (2004),
an algorithm that is a combination of the K-means algorithm, Nel-
der-Mead simplex search and PSO technique (K-NM-PSO) as pro-
posed by Kao et al. (2008) and the ABC algorithm proposed by
Zhang et al. (2010).

Because we have not been able to contact any of the authors to
obtain original source codes, all algorithms were programmed in
Java, and Java codes were compiled under JDK 6. Algorithms are
executed on an AMD Athlon X2 250 3.00 GHz computer running
Microsoft Windows XP. The parameter settings for ACO, K-NM-
PSO and ABC are set the same as in the original corresponding
paper.

To evaluate these heuristics, we used seven datasets. Two of
them are artificial datasets taken from Kao et al. (2008). The other
five datasets, namely, iris, thyroid, wine, contraceptive method
choice (CMC) and glass, which have been employed by many
researchers to test the performance of their algorithms, are taken
from Machine Learning Laboratory (Blake & Merz, 1998). The data-
sets used in this study can be described as follows:

Data set 1: Artificial dataset one (Art1). This dataset contains 600
objects with two attributes and four clusters. Samples
were drawn from four independent bivariate normal
distributions, where classes were distributed accord-

. _ (o _ 105 005| ._
ing to H*((p:>»27[0.05 0.5}7171,...74,

¢, =-3, ¢, =0, @3 =3, @, =6. pisthe mean vec-
tor, and X is the covariance matrix.

Data set 2: Artificial dataset two (Art2). This dataset contains 250
objects with three attributes and five clusters. Sam-
ples were drawn from five independent uniform dis-
tributions with ranges of [85,100], [70,85], [55,70],
[40,55] and [25,40].

Data set 3: The iris dataset. This dataset contains three categories
of 50 objects each, where each category refers to a
type of iris plant. In the iris dataset, there are 150
instances with four attributes, which are sepal length
in cm, sepal width in cm, petal length in cm and petal
width in cm.

Data set 4: The thyroid gland dataset. This dataset contains three
categories of human thyroid diseases, namely, euthy-
roidism, hypothyroidism and hyperthyroidism. In the
thyroid gland dataset, there are 215 samples with five
attributes that were evaluated with various labora-
tory tests, including the T3-resin uptake test, total
Serum thyroxin as measured by the isotopic displace-
ment method, total serum triiodothyronine as
measured by radioimmuno assay, basal thyroid-
stimulating hormone as measured by radioimmuno
of 200 mg of thyrotropin releasing-hormone and the
basal value (Zhang et al., 2010).

Data set 5: The wine dataset. This dataset contains chemical anal-
yses of 178 wines derived from three different culti-
vars, with 13 attributes, namely, alcohol, malic acid,

ash, alkalinity of ash, magnesium, total phenols, flavo-
noids, nonflavonoid phenols, proanthocyanins, color
intensity, hue, OD280/0D315 of diluted wines and
praline.

Data set 6: The CMC dataset. This dataset is a subset of the 1987
National Indonesia Contraceptive Prevalence Survey.
The objects are married women who either were not
pregnant or did not know if they were at the time of
interview. The problem involves predicting the choice
of the current contraceptive method of a woman
based on her demographic and socio-economic char-
acteristics (Kao et al., 2008). This dataset contains
1473 objects with nine attributes and three clusters.

Data set 7: The glass identification dataset. This dataset contains
214 objects with nine attributes, namely, refractive
index, sodium, magnesium, aluminum, silicon, potas-
sium, calcium, barium and iron. The data were sam-
pled from six different types of glass, that is, float-
processed building windows, non-float processed
building windows, float-processed vehicle windows,
containers, tableware and headlamps.

To compare the performance of our algorithm with those of
other approaches, algorithms were each run 10 times for each of
the datasets. Table 2 provides the objective function values ex-
pressed in Eq. (2) obtained from the four clustering algorithms
for the datasets described above. Because each of the algorithms
was run 10 times, we reported the average of 10 objective function
values and the best (i.e., minimum) and the worst (i.e., maximum)
objective function values of 10 experiments, which indicates the
range of values that the algorithms span. Note that for the compar-
isons given in Tables 2-4, we derived the PSO algorithm such that
it employed the fitness function given in Eq. (7) and its initial par-
ticles were set equal to the given number of clusters on dimension
K, because all the other approaches assume that the number of
clusters are known.

From the results given in Table 2, we can see that none of the
previously-proposed algorithms outperforms the PSO approach in
terms of the average and best objective function values for the se-
ven datasets used here. Although PSO is outperformed by ACO and
ABC in terms of worst objective function value for glass dataset,

Table 2
Comparison of objective function values for the four algorithms.

Data set Criteria K-NM-PSO ACO ABC PSO

Art1 Average 161.08 718.47 158.51 158.51
Best 158.51 622.57 158.51 158.51
Worst 184.21 870.18 158.51 158.51

Art2 Average 2102.66 1940.25 1794.86 1788.70
Best 1788.70 1836.72 1788.70 1788.70
Worst 2671.54 2026.87 1850.31 1788.70

iris Average 97.23 97.34 97.22 97.22
Best 97.22 97.22 97.22 97.22
Worst 97.33 97.83 97.22 97.22

thyroid Average 1986.38 1987.19 1963.51 1960.71
Best 1966.85 1965.81 1960.59 1960.59
Worst 2012.93 2008.23 1973.04 1961.75

wine Average 16534.52 16531.10 16530.54 16530.54
Best 16530.54 16530.54 16530.54 16530.54
Worst 16550.45 16536.19 16530.54 16530.54

cmc Average 5542.05 8163.75 5542.77 5541.64
Best 5541.64 7863.54 5541.65 5541.64
Worst 5544.25 8415.07 5544.02 5541.64

glass Average 225.95 219.90 214.84 213.41
Best 208.93 216.30 208.91 202.92
Worst 250.27 223.12 222.16 226.51
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Table 3
Comparison of error rates for the four algorithms.
Data set Criteria K-NM-PSO ACO ABC PSO
Artl Average 0.10 16.18 0.00 0.00
Best 0.00 14.74 0.00 0.00
Worst 0.99 17.54 0.00 0.00
Art2 Average 5.18 3.02 0.12 0.00
Best 0.00 0.94 0.00 0.00
Worst 13.62 4.75 1.25 0.00
iris Average 11.59 10.95 11.41 12.03
Best 11.41 9.45 11.41 12.03
Worst 12.03 11.41 11.41 12.03
thyroid Average 34.31 36.23 36.71 35.10
Best 21.33 32.53 36.14 35.04
Worst 39.28 39.57 37.91 35.64
wine Average 28.06 28.12 28.09 27.96
Best 27.96 28.09 28.09 27.96
Worst 28.09 28.44 28.09 27.96
cmc Average 4413 44.69 4417 4418
Best 44.08 44.49 4414 4418
Worst 44.21 44.85 44.20 4418
glass Average 33.36 26.93 32.18 30.63
Best 31.60 26.42 26.62 27.45
Worst 38.45 27.44 34.92 32.98
Table 4
Comparison of computation times for the four algorithms.
Data set Criteria K-NM-PSO ACO ABC PSO
Artl Average 0.023 5.959 3.116 0.630
Best 0.015 5.921 3.109 0.625
Worst 0.032 6.000 3.125 0.641
Art2 Average 0.024 2.680 1.952 0.588
Best 0.015 2.656 1.938 0.578
Worst 0.032 2.734 1.969 0.610
iris Average 0.014 1.592 0.939 0.359
Best 0.000 1.578 0.937 0.343
Worst 0.016 1.610 0.953 0.375
thyroid Average 0.036 2.402 1.541 0.697
Best 0.031 2.390 1.531 0.687
Worst 0.047 2421 1.547 0.718
wine Average 0.234 2.692 2.589 2.944
Best 0.218 2.672 2.578 2.922
Worst 0.250 2.703 2.625 3.000
cmc Average 0.717 18.817 15.620 11.862
Best 0.688 18.734 15.578 11.843
Worst 0.750 18.906 15.656 11.906
glass Average 0.205 3.014 4480 3.342
Best 0.187 2.984 4.437 3.328
Worst 0.219 3.047 4.515 3.375

where n denotes the total number of objects. A; is equal to one if
objects i and [ are members of the same cluster before clustering;
otherwise, A; is equal to zero. B; is equal to one if objects i and [
are members of the same cluster after clustering; otherwise, By is
equal to zero.

When considering error rates, Table 3 shows that none of the
four algorithms clearly outperforms the others in terms of the
average, best and worst error rates for all datasets. Additionally,
consolidating Tables 2 and 3, we note that PSO heuristic is obvi-
ously not less effective than any other previously-proposed ap-
proach, but it may be more effective in some cases.

Table 4 gives the computation time in seconds for the four algo-
rithms applied to the seven datasets.

From these results, we note that except for K-NM-PSO, none of
the previously-proposed algorithms clearly outperforms the PSO
approach in terms of the average, best and worst computation
times for all datasets. However, the PSO heuristic clearly outper-
forms ACO and ABC for the Art1, Art2, iris, thyroid and cmc data-
sets. Note that K-NM-PSO is very efficient because population
size and number of maximum iterations were set very low by
the researchers, that is, 3 x m+1 and m x 10, respectively. Also
note that to reach the optimum solution with a lower population
size and a fewer number of iterations, the K-NM-PSO heuristic em-
ploys the K-means algorithm and Nelder-Mead simplex search,
which can also be adapted to any other heuristic. However,
although K-NM-PSO is always far ahead of other heuristics in terms
of efficiency, we note that the PSO heuristic is fairly efficient
according to the results shown in Table 4.

Because our PSO algorithm is able to solve clustering problems
in which the number of clusters is not known, Table 5 reports the
results obtained by PSO algorithm when searching solutions of
these types of problems. We again ran the algorithm 10 times for
each dataset. Thus, the third, fourth and fifth columns of Table 5
show the fitness value described in Eq. (8), error rate (expressed
as percentage) shown in Eq. (16) and computation time in seconds,
respectively. The sixth column shows the real number of clusters
for the respective datasets, while the seventh column provides
the average number of clusters predicted by the PSO algorithm.
The initial particles were randomly assigned to each dimension.

none of the previously-proposed heuristics outperforms the PSO
approach in terms of the worst objective function value for the
remaining datasets. The results also show that PSO is robust be-
cause the difference between the objective function values of the
best and worst solutions are always very low and even zero for
the most of the datasets.

Inspired by the study of Kao et al. (2008), we employed another
criterion to measure solution quality called error rate (ER). This
measurement equals the number of misplaced pair of objects di-
vided by the total number of all pairs, expressed as percentage. It
is calculated as follows:

n-1 n
ER= (> > |Ai— B (@) x 100 (16)

i=1 I=i+1

Table 5
The results of the PSO heuristic when the number of clusters is unknown.
Data Criteria  Fitness ER (%) Time(s) # of Average #
set value clusters  of clusters
real predicted
Artl Average 151.216 1.554 5.598 4.00 4.50
Best 140.403  0.000 4.078
Worst 154.283  6.255 9.765
Art2 Average  1829.205 4.176 8211 5.00 6.10
Best 1584.399  0.896 4.204
Worst 2410.243 8.623 12.343
iris Average 78.449 15.819 5.125 3.00 4.80
Best 75434 12.412 3.750
Worst 83.352 21.969 5.875
thyroid Average  1560.735 35.454 12.306 3.00 4.80
Best 1454.146  22.791 9.515
Worst 1788.311 38.535 13.938
wine Average 10443.604 28.623  519.986 3.00 5.00
Best 10371.906 28.350  490.109
Worst 10563.697 31.080  562.531
cmc Average  4604.153 40.706 2298.795 3.00 5.00
Best 4551.796 40.385 2133.438
Worst 4701.457 41.494 2466.562
glass Average 217.020 34.226 46.925 6.00 6.90
Best 197.173 31.885 29.875
Worst 256.049 40.200 66.672
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According to the average error rates, the results show that the
PSO heuristic finds quite similar solutions for problems with both
a known number of clusters and an unknown number of clusters.
However, in the case in which the number of clusters is unknown,
robustness is reduced because the difference between the best and
worst fitness values is relatively high for all datasets. Additionally,
although efficiency considerably decreases, it is within tolerable
limits for five the Art1, Art2, iris, thyroid and glass datasets. Conse-
quently, we can say that PSO algorithm is still effective, and its
computation times are mostly within acceptable limits when deal-
ing with problems with an unknown number of clusters.

6. Conclusion

There have been many studies that develop algorithms to solve
the clustering problem. In this paper, a new particle swarm optimi-
zation (PSO) algorithm, which using characterizes bird flocking or
fish schooling behavior, is developed to solve the clustering prob-
lem. Differing from many of the previously-proposed approaches,
the PSO algorithm can be applied both when the number of clus-
ters is known as well as when this number is unknown. Computa-
tional experiments show that the proposed algorithm of this study
is effective, robust, easy to tune and tolerably efficient as compared
with other approaches.
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