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a  b  s  t  r  a  c  t

In  order  to gather  information  more  efficiently  in  terms  of  energy  consumption,  wireless  sensor  networks
(WSNs)  are  partitioned  into  clusters.  In  clustered  WSNs,  each  sensor  node  sends  its  collected  data  to  the
head of the  cluster  that  it belongs  to.  The  cluster-heads  are  responsible  for  aggregating  the  collected
data  and forwarding  it to the  base  station  through  other  cluster-heads  in  the  network.  This  leads  to  a
situation  known  as  the  hot  spots  problem  where  cluster-heads  that  are  closer  to  the  base station  tend
to  die  earlier  because  of  the  heavy  traffic  they  relay.  In order to  solve  this  problem,  unequal  clustering
algorithms  generate  clusters  of different  sizes.  In WSNs  that are  clustered  with  unequal  clustering,  the
clusters  close  to  the  base  station  have  smaller  sizes  than clusters  far  from  the base  station.  In this  paper,
a fuzzy  energy-aware  unequal  clustering  algorithm  (EAUCF),  that  addresses  the  hot  spots  problem,  is
introduced.  EAUCF  aims  to decrease  the intra-cluster  work  of the  cluster-heads  that  are  either  close  to
the  base  station  or have  low  remaining  battery  power.  A  fuzzy  logic  approach  is  adopted  in  order  to  handle

 
 

 

uncertainties  in  cluster-head  radius  estimation.  The  proposed  algorithm  is  compared  with  some  popular
clustering  algorithms  in  the  literature,  namely  Low  Energy  Adaptive  Clustering  Hierarchy,  Cluster-Head
Election  Mechanism  using  Fuzzy  Logic  and  Energy-Efficient  Unequal  Clustering.  The  experiment  results
show  that  EAUCF  performs  better  than  the  other  algorithms  in  terms  of  first  node  dies, half  of  the  nodes
alive  and  energy-efficiency  metrics  in  all scenarios.  Therefore,  EAUCF  is a  stable  and  energy-efficient
clustering  algorithm  to be  utilized  in  any  WSN  application.
. Introduction

There have been recent advances in micro-electro-mechanical
ystems (MEMS) technology, wireless communications, and digital
lectronics. These advances have enabled the development of low-
ost, low-power, multifunctional nodes which are small in size and
hich communicate with each other using radio frequencies [1].  A

ingle sensor node has limited capability in sensing and it is only
apable of collecting data from a limited region within its range.
herefore, in order to gather useful information from an entire of
SN, the data must be collected through the collective work of

 number of sensor nodes. These collaboratively working sensor
odes form a wireless sensor network (WSN).

In WSNs, each sensor node receives a signal from a limited
egion. This signal is processed in that sensor node and the sensed

ata is generally transmitted to the observers (e.g. base stations).
ensor nodes consume energy while receiving, processing and
ransmitting data. In most of the cases, these sensor nodes are

∗ Corresponding author. Tel.: +90 5393018072.
E-mail addresses: e1571025@ceng.metu.edu.tr (H. Bagci),

azici@ceng.metu.edu.tr (A. Yazici).
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©  2013  Elsevier  B.V.  All rights  reserved.

equipped with batteries which are not rechargeable. Therefore,
energy efficiency is still a major design goal in WSNs [2].

In order to aggregate data through efficient network organiza-
tion, nodes can be partitioned into a number of small groups, called
clusters [2]. In general, each cluster has a cluster-head which coor-
dinates the data gathering and aggregation process in a particular
cluster. Clustering in WSNs guarantees basic performance achieve-
ment with a large number of sensor nodes [3,4]. In other words,
clustering improves the scalability of WSNs [5].  This is because clus-
tering minimizes the need for central organization and promotes
local decisions.

There has been a substantial amount of research on clustering
protocols for WSNs. Most of the clustering protocols utilize two
techniques, selecting cluster-heads with more residual energy and
rotating cluster-heads periodically to balance energy consump-
tion of the sensor nodes over the network [6].  These clustering
algorithms do not take the location of the base station into con-
sideration. This lack of consideration causes the hot spots problem
in multi-hop WSNs. The cluster-heads near the base station tend

to die earlier, because they are in a heavier relay traffic than the
cluster-heads which are located relatively far from the base station.
In order to avoid this problem, some unequal clustering algorithms
have been proposed in the literature [6,7]. In unequal clustering,

dx.doi.org/10.1016/j.asoc.2012.12.029
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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he network is partitioned into clusters of different sizes. The clus-
ers close to the base station are smaller than the clusters far from
he base station.

In this paper, a fuzzy energy-aware unequal clustering algo-
ithm (EAUCF) is introduced to make a further improvement in
aximizing the lifetime of the WSN. EAUCF is a distributed compet-

tive algorithm which selects the cluster-heads via energy-based
ompetition among the tentative cluster-heads selected using a
robabilistic model. EAUCF mostly focuses on assigning appro-
riate competition ranges to the tentative cluster-heads. In order
o make wise decisions, the proposed approach uses the residual
nergy and the distance to the base station of the sensor nodes. In
ddition to this, EAUCF employs fuzzy logic to handle uncertainties
n competition radius estimation.

There are several proposed clustering algorithms in the lit-
rature. The Low Energy Adaptive Clustering Hierarchy (LEACH)
8] protocol rotates the cluster-heads periodically in order to bal-
nce energy consumption. Cluster-heads are rotated in each round.
he term round refers to the interval between two  consecutive
luster formation process. LEACH uses a pure probabilistic model
o select cluster-heads. Cluster-Head Election Mechanism using
uzzy Logic (CHEF) [9],  Energy-Efficient Unequal Clustering (EEUC)
6] and EAUCF also utilize randomized periodical rotation. How-
ver, they do not use a pure probabilistic model to select the
nal cluster-heads. EAUCF, CHEF and the approach of Gupta et al.
10] utilize fuzzy logic for handling uncertainties in clustering.
HEF and the approach of Gupta et al. assign chance values to
he sensor nodes using the results inferred from predefined fuzzy
f-then mapping rules. These chance values are used in cluster-
ead competition. However, EAUCF employs fuzzy logic for wisely
djusting the competition ranges of the tentative cluster-heads.
AUCF is an unequal clustering algorithm like EEUC. EEUC assigns
nequal competition ranges to the tentative cluster-heads consid-
ring only the distance to the base station. In contrast, EAUCF
mploys both the residual energy and the distance to the base
tation of the tentative cluster-heads for estimating competition
adius.

In order to evaluate the proposed algorithm, its performance
s compared with that of some popular clustering algorithms in
he literature, namely LEACH, CHEF and EEUC. The experiments are
erformed on four different predefined scenarios. The experimen-
ation results show that EAUCF performs better than all of the other
lgorithms in all of the scenarios. Therefore, EAUCF is a stable and
nergy-efficient clustering algorithm that can be used in any WSN
pplication.

The rest of this paper is organized as follows. In the next
ection, the research related to the proposed approach is briefly
xplained. In Section 3, the proposed clustering algorithm EAUCF
s explained in detail. In Section 4, in order to evaluate EAUCF,
t is compared with LEACH, CHEF and EEUC by using the sim-
lation method and the detailed evaluation results are given.
inally, the paper is concluded and some possible future works are
isted.

. Related work

In the literature, a number of clustering algorithms have been
roposed for WSNs. In this part, the key features of the most popular
nd recent clustering algorithms are explained.

LEACH is a distributed algorithm which makes local decisions
o elect cluster-heads. If the cluster-heads that are selected do

 
 

 

ot change throughout the network’s lifetime, then it is obvi-
us that these static cluster-heads die earlier than the ordinary
odes. Therefore, LEACH includes randomized rotation of cluster-
ead locations to evenly distribute the energy dissipation over
puting 13 (2013) 1741–1749

the network [8].  LEACH also performs local data compression in
cluster-heads to decrease the amount of data that is forwarded to
the base station.

In the HEED (Hybrid Energy-Efficient Distributed Clustering)
protocol, the residual energy of each sensor node is the primary
parameter for probabilistic election of cluster-heads [2].  In case of
a tie in cluster-head election, node degree or average distance to
neighbors is used to determine the cluster-head. Experimentations
that have been employed to evaluate the HEED protocol show that
clustering and data aggregation at least double the lifetime of the
WSN.

Kuhn et al. study the initializing of newly deployed ad hoc and
sensor networks, and propose a probabilistic cluster-head election
algorithm. In this approach, the probability of each node depends
on the node degree [15]. This algorithm tries to find a dominating
set of nodes which will be assigned as cluster-heads.

Ali et al. proposed a multi-objective solution by using a multi-
objective particle swarm optimization (MOPSO) algorithm [11].
This algorithm aims to optimize the number of clusters in an ad
hoc network as well as the energy consumption in nodes in order to
provide an energy-efficient solution and reduce the network traffic.
In this approach, inter-cluster and intra-cluster traffic is managed
by the cluster-heads. The parameters that are considered by this
algorithm are degree of nodes, transmission power, and the battery
power consumption of the mobile nodes.

Some of the clustering algorithms employ fuzzy logic to han-
dle uncertainties in WSNs. Basically, fuzzy clustering algorithms
use fuzzy logic for blending different clustering parameters to elect
cluster-heads. In the fuzzy clustering approach proposed by Gupta
et al., the cluster-heads are elected at the base station. In every
round, each sensor node forwards its clustering information to the
base station. There are three fuzzy descriptors which are consid-
ered by the base station during cluster-head election. These fuzzy
descriptors are node concentration, residual energy in each node
and node centrality [10].

CHEF is a similar approach to that of Gupta et al. [10], but it
performs cluster-head election in a distributed manner. Thus, the
base station does not need to collect clustering information from all
sensor nodes [9].  There are two  fuzzy descriptors that are employed
in cluster-head election. These are the residual energy of each node
and local distance. Local distance is the total distance between the
tentative cluster-head and the nodes within a predefined constant
competition radius.

The sensor nodes closer to the base station consume more
energy, because the network traffic increases as it approaches the
base station [2].  Therefore, the nodes closer to the base station
quickly run out of battery. In order to balance energy consump-
tion over the network, unequal clustering approach is introduced.
This approach is based on the idea of decreasing the cluster sizes as
they approach the base station. If a cluster-head closer to the base
station has less intra-cluster work, then it can contribute more to
inter-cluster data forwarding. Shu et al. proposed an approach that
aims to achieve optimal power allocation over the sensor network.
This approach assigns larger cluster sizes to cluster-heads that take
less role in data forwarding process. The proposed network model
in this approach assumes a circular sensing region. However, gen-
erally sensor nodes are deployed randomly by throwing them at
the target region. Therefore, this approach is not practical for real
environments in most cases.

EEUC is a distributed competitive unequal clustering algorithm
where cluster-heads are elected by local competition [9].  Every
node has a preassigned competitive radius. This radius gets smaller

as the nodes approach the base station. This makes EEUC an unequal
clustering algorithm. The EEUC algorithm is also a probabilistic
clustering algorithm, because in each cluster formation round it
probabilistically decides whether it is going to participate to the
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luster-head election competition. If a sensor node has decided to
articipate in the competition, then it becomes a tentative cluster-
ead. Tentative cluster-heads in local regions compete in order
o become actual cluster-heads. This competition is based on the
esidual energy of each tentative cluster-head.

. Preliminaries

Before describing the proposed algorithm in detail, the charac-
eristics of the system model that are used in the implementation
re introduced. First, the assumptions that are made about the net-
ork model are listed:

Sensor nodes are deployed randomly.
All sensor nodes and the base station are stationary after the
deployment phase.
Nodes are capable of adjusting the transmission power according
to the distance of the receiver nodes.
The distance between nodes can be computed based on the
received signal strength. Therefore, there is no need for sensor
nodes to know their exact locations.
All sensor nodes have the same amount of energy when they are
initially deployed.
The base station need not be located far away from the sensing
region.
All sensor nodes are identical.

The first order radio model that is employed in [8] is used for
he energy dissipation model in simulations. Eq. (1) represents the
mount of energy consumed in transmitting l bits of data to d dis-
ance. Eelec is the energy consumption per bit in the transmitter
nd receiver circuitry. �amp is the energy dissipated per bit in the
F amplifier.

Tx(l, d) = lEelec + l�ampd2 (1)

Eq. (2) represents the amount of energy consumed in receiving
 bits of data.

Rx(l) = lEelec (2)

. EAUCF clustering algorithm

In this section, the proposed clustering algorithm EAUCF
Energy-Aware Unequal Clustering with Fuzzy) is described in
etail. The preliminary version of this study is included in [12].
AUCF is a distributed competitive unequal clustering algorithm.
t makes local decisions for determining competition radius and
lecting cluster-heads. In order to estimate the competition radius
or tentative cluster-heads, EAUCF employs both residual energy

 
 

 

nd distance to the base station parameters. Moreover, EAUCF takes
dvantage of fuzzy logic to calculate competition radius. EAUCF is
lso based on a probabilistic model which is employed for elect-
ng tentative cluster-heads. However, it does not elect the final

able 1
uzzy if-then mapping rules for competition radius calculation in EAUCF.

Distance to base Residual energy Competition radius

Close Low Very small
Close Medium Small
Close High Rather small
Medium Low Medium small
Medium Medium Medium
Medium High Medium large
Far Low Rather large
Far Medium Large
Far High Very large
puting 13 (2013) 1741–1749 1743

cluster-heads just by depending on this model. The main flow of
EAUCF is explained in Algorithm 1. Rcomp and resEnergy represent
the competition radius and the residual energy of a particular sen-
sor node, respectively.

Algorithm 1. Clustering algorithm of EAUCF protocol
1: T ← probability to become a tentative cluster-head
2: nodeState ← CLUSTERMEMBER
3: clusterMembers ← empty
4: myClusterHead ← this
5: beTentativeHead ← TRUE
6:  � ← rand(0,1)
7:  if � < T then
8: Calculate Rcomp using fuzzy if-then mapping rules
9: CandidateCHMessage(ID,  Rcomp , resEnergy)
10:  On receiving CandidateCHMessage from node N
11: if this.resEnergy < N.resEnergy then
12: beTentativeHead ← FALSE
13: Advertise QuitElectionMessage(ID)
14: end if
15: end if
16: if beTentativeHead = TRUE then
17: Advertise CHMessage(ID)
18: nodeState ← CLUSTERHEAD
19: On receiving JoinCHMessage(ID) from node N
20: add N to the clusterMembers list
21: EXIT
22: else
23: On receiving all CHMessages
24: myClusterHead ← the closest cluster-head
25: Send JoinCHMessage(ID) to the closest cluster-head
26: EXIT
27: end if

In every clustering round, each sensor node generates a random
number between 0 and 1. If the random number for a particu-
lar node is smaller than the predefined threshold T, which is the
percentage of the desired tentative cluster-heads, then that sensor
node becomes a tentative cluster-head. The competition radius of
each tentative cluster-head changes dynamically in EAUCF, because
EAUCF uses residual energy and distance to the base station to cal-
culate competition radius. It is logical to decrease the service area
of a cluster-head while its residual energy is decreasing. If the com-
petition radius does not change as the residual energy decreases,
the sensor node runs out of battery power rapidly. EAUCF takes
this situation into consideration and decreases the competition
radius of each tentative cluster-head as its battery power decreases.
Radius computation is accomplished by using predefined fuzzy if-
then mapping rules to handle the uncertainty. These fuzzy if-then
mapping rules are given in Table 1. In order to evaluate the rules,
the Mamdani Method [13], which is one of the most frequently used
methods [10], is used as a fuzzy inference technique. The center of
area (COA) method is utilized for defuzzification of the competition
radius.

In order to calculate cluster-head competition radius, two fuzzy
input variables are used. The first one is the distance to the base
station. The fuzzy set that describes the distance to base station
input variable is depicted in Fig. 1. The linguistic variables for this
fuzzy set are close, medium and far.  A trapezoidal membership func-
tion is chosen for close and far.  On the other hand, the membership
function of medium is a triangular membership function.

The second fuzzy input variable is the residual energy of the ten-
tative cluster-head. The fuzzy set that describes the residual energy
input variable is illustrated in Fig. 2. Low, medium and high are the
linguistic variables of this fuzzy set. The low and high linguistic vari-
ables have a trapezoidal membership function while medium has a
triangular membership function. A number of candidate member-
ship functions are tested to find the best fitting functions for input

variables. Finally, these membership functions are chosen, because
they yield better results in the tests.

The only fuzzy output variable is the competition radius of
the tentative cluster-head. The fuzzy set for competition radius is
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Fig. 1. Fuzzy set for fuzzy input variable DistanceToBase.
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Table 2
Examples for fuzzy cluster competition radius calculation.

Example no Distance (m)  Energy (J) Radius (m)

1 112.90 1.0 45.31
2 20.12  1.0 20.61
3 65.92  1.0 31.61
4  84.31 0.999 38.88
5  84.31 0.70 33.47
6  103.77 0.50 36.65
7  122.80 0.64 46.02
8 112.89  0.59 41.08

 
 

 

Distance to Base Station (m)

Fig. 2. Fuzzy set for fuzzy input variable ResidualEnergy.

emonstrated in Fig. 3. There are 9 linguistic variables which are
ery small, small, rather small, medium small, medium, medium large,
ather large, large and very large, very small and very large have a
rapezoidal membership function. The remaining linguistic vari-
bles are represented by using triangular membership functions.
he function in Fig. 3 is not a symmetric triangular function as in
igs. 1 and 2. This is because the function in Fig. 3 has provided
etter results in the experimentations.

If a particular tentative cluster-head’s battery is full and it is
ocated at the maximum distance to the base station, then it has
he maximum competition radius. On the contrary, if a particu-
ar cluster-head’s battery is near empty and it is the closest node
o the base station, then it has the minimum competition radius.
he remaining intermediate possibilities fall between these two
xtreme cases.

The maximum competition radius is a static parameter for a par-

icular WSN. The base station broadcasts the value of this parameter
o the entire network. Thus, all the sensor nodes know the maxi-

um competition radius, in advance. Each of the sensor nodes can
alculate their relative competition radius according to the value
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Fig. 3. Fuzzy set for fuzzy output variable CompetitionRadius.
9 99.30  0.29 34.63
10 8.94 0.76 12.46

of this parameter. The maximum distance to the base station is
also a static parameter, because it is assumed that the sensor nodes
are stationary. Each sensor node can determine its relative position
to the base station considering the maximum distance to the base
station in the WSN.

The change of competition radius according to residual energy
and distance to the base station is demonstrated by the examples in
Table 2. In these examples, the maximum distance to base station is
127 m and the maximum competition radius is set at 60 m.  In exam-
ples 1, 2 and 3, the residual energy levels of the nodes are identical
and equal to 1 J. However, their distances to the base station are dif-
ferent. As it approaches the base station, the competition radius of
the sensor node decreases. In examples 4 and 5, the distance to the
base station is identical, but energy levels are different. The node
which has lower energy has a lower competition radius.

After each tentative cluster-head determines its competition
radius, cluster-head competition begins. Each tentative cluster-
head advertises CandidateCH Message to compete with other
tentative cluster-heads locally. This message is advertised to the
tentative cluster-heads which are inside the maximum cluster-
head competition radius. It includes node ID, competition radius
and the residual energy level of the source node. Residual energy
is the key parameter in cluster-head competition. If a tentative
cluster-head receives a CandidateCHMessage from another tenta-
tive cluster-head which is in its competition range and the residual
energy of the source node is greater than the residual energy of
the receiving node, then the receiving node quits the cluster-head
competition and broadcasts a QuitElectionMessage. If a particular
tentative cluster-head has the highest residual energy level among
the tentative cluster-heads which it receives a CandidateCHMessage
from, then it becomes a cluster-head. This competition guarantees
that no other cluster-head exists in the competition radius of a par-
ticular cluster-head. After cluster-head election is completed, each
ordinary sensor node joins the closest cluster, as in LEACH, CHEF
and EEUC. Fig. 4 illustrates a WSN  which is clustered by using the
EAUCF algorithm. In this example, the number of deployed sensors
is 200.

5. Simulation results

In this section, the results of the experiments that are employed
to evaluate EAUCF are presented. EAUCF is compared with three
different clustering algorithms, namely LEACH, CHEF and EEUC.
A WSN  clustering simulator is implemented to evaluate the pro-
posed algorithm. This simulation tool is able to simulate LEACH,
CHEF, EEUC and EAUCF for different WSN  configurations. Several
experiments are conducted on this tool to evaluate the algorithm.
Experimental results show that the proposed algorithm performs

better than LEACH, CHEF and EEUC in all of the scenarios.

Handy et al. used the metrics first node dies (FND), half of the
nodes alive (HNA) and last node dies (LND) in [14] to estimate the life-
time of the WSNs. FND denotes an estimated value for the round in
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Table 3
Configuration of Scenario 1.

Parameter Value

Network size 200 × 200 m
Base station location (100, 100) m
Number of sensor nodes 100
Initial energy 1 J
Data packet size 4000 bits

2

is not sufficient to obtain the best solution. Since CHEF takes both
energy and local distance parameters into consideration, it per-
forms better than LEACH. EEUC also considers energy and distance
to the base station. Hence, it has a better performance than LEACH.

Table 4
Scenario 1: FND, HNA and total remaining energy.

Algorithm FND HNA Tot. rem. energy (J)

 
 

 

Fig. 4. A WSN  which is clustered by using EAUCF algorithm.

hich the first node dies. This metric is useful in sparsely deployed
SNs. However, in densely deployed WSNs, the death of a sin-

le node is not an important issue. Therefore, Handy et al. propose
he metric HNA which denotes an estimated value for the round in
hich half of the nodes die. In addition to this, they provide another
etric LND which denotes an estimated value for the overall life-

ime of the network. However, LND is not a very useful metric,
ecause after half of the sensor nodes die, the WSN  becomes almost
seless in most cases. Therefore, FND and HNA metrics are chosen
o evaluate the performance of the algorithms.

In order to evaluate the proposed algorithm, four different sce-
arios are developed. In the first three scenarios, the base station

s located at the center of the WSN. In the last scenario, the base
tation is outside the WSN.

In each round of the scenarios, first the cluster-heads are elected
nd then clusters are formed. Afterwards, each ordinary sensor
ode transmits 4000 bits of data to its cluster-head. Each cluster-
ead aggregates the received data with a certain aggregation ratio
nd forwards it to the base station. The aggregation ratio is set to
0% in the simulations. In the simulations of CHEF, Kim et al. also
sed the same aggregation ratio [9].  The length of the aggregated
ata for a particular cluster-head is calculated using Eq. (3).

agg = Lrec + (Lrec × Ragg × N) (3)

In Eq. (3),  Lagg represents the length of the aggregated data in
its while Lrec represents the length of the received data from each
luster member. Ragg is the ratio of aggregation and N is the total
umber of cluster members. For example, if a particular cluster
as 20 cluster members each transmitting 100 bits of data to their
luster-head where the aggregation ratio is set to 10%, then the
ength of the aggregated data is (100 + (100 × 0.1 × 20)) which is
qual to 300 bits.

The LEACH cluster-heads forwards the aggregated data to the
ase station directly in all of the scenarios. However, CHEF, EEUC
nd EAUCF employ the EEUC multi-hop routing protocol [6] in Sce-

arios 2, 3, and 4. In Scenario 1, all of the algorithms forward the
ggregated data to the base station via direct transmission.

In all of the scenarios, the desired percentage of cluster-heads
or LEACH is set to 0.1. The  ̨ value of the CHEF algorithm is set
�amp 100 pJ/bit/m
Eelec 50 nJ/bit
Aggregation ratio 10%

to 2.5 as in the original study [9].  The optimal threshold Popt for
CHEF is calculated as approximately 0.3 for 100 nodes and 0.21 for
200 nodes using Eqs. (4) and (5) which are defined in [9].  Since the
threshold T is set to 0.4 and the coefficient c is set to 0.5 for the EEUC
clustering algorithm in [6], these values are also used in the exper-
iments in this paper. In order to find an optimal threshold T value
for EAUCF, several candidate threshold values are tried. Finally, this
value is selected as 0.3, because it gives better results than other
alternatives.

Popt =  ̨ · P (4)

P =
√

n√
2�
·
√

�fs

�mp
·

√
A

(0.765 ×
√

A × 0.5)2
· 1

n
(5)

In order to produce more reliable results, every scenario is sim-
ulated 50 times, and the average of the results is taken.

5.1. Scenario 1

In this scenario, the base station is located at the center of the
wireless sensor network. Each cluster-head forwards the aggre-
gated data to the base station directly without using a relay node.
The detailed configuration of this scenario is depicted in Table 3.

The maximum competition radius is assigned as 30 and 60 m
for EEUC and EAUCF, respectively. These are the optimal maximum
competition radius values for this scenario. After the wireless sen-
sor network is deployed, the maximum distance to the base station
is calculated as approximately 127.35 m.  Table 4 shows the simu-
lation results of this scenario.

As seen in Table 4, the proposed algorithm EAUCF performs bet-
ter than LEACH, CHEF and EEUC for both FND and HNA metrics.
The performances of CHEF and EEUC are close to each other, but
CHEF performs slightly better than EEUC especially for FND. LEACH
has the poorest performance among the four clustering algorithms
for this scenario. EAUCF is 36.0% more efficient than LEACH, 10.7%
more efficient than CHEF and 14.9% more efficient than EEUC if
the FND metric is considered. It performs 30.7% better than LEACH,
4.9% better than CHEF and 6.4% better than EEUC if the HNA metric
is used for performance evaluation.

The LEACH performance is the poorest, because it does not con-
sider the residual energy level of the sensor nodes during clustering.
It uses a pure probabilistic model for clustering, but this model itself
LEACH 358 626 24.32
CHEF 440 780 37.51
EEUC 424 769 37.76
EAUCF 487 818 40.36
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Table 6
Scenario 2: FND, HNA and total remaining energy.

Algorithm FND HNA Tot. rem. energy (J)

LEACH 392 695 28.47
CHEF 599 765 38.30

clusters is increased to cover all of the WSN.
The last column of Table 6 shows the total remaining energy

levels for each algorithm at round 500. EAUCF seems to be the

 
 

 

ig. 5. Scenario 1: distribution of alive sensor nodes according to the number of
ounds for each algorithm.

AUCF considers the energy level of each tentative cluster-head in
ts competition radius calculation. This means that if a tentative
luster-head has more energy, then it will have a greater cluster
adius. In other words, it can serve more sensor nodes in the local
egion. This property ensures that EAUCF assigns more work to the
luster-heads which have more energy. This consideration makes
AUCF perform better than other algorithms for this scenario.

Fig. 5 depicts the distribution of the number of alive sensor nodes
ith respect to the number of rounds for each algorithm. This figure

learly depicts that deaths of sensor nodes for EAUCF begin after all
he other algorithms.

The last column of Table 4 represents the total remaining energy
or each algorithm at round 500. By using the information in this
olumn, the energy efficiencies of the simulated algorithms are
ompared. Since every node has 1 J initial energy, the total energy
f WSN  is 100 J at the beginning. The battery of each sensor node
epletes as the number of round increases. At round 500, LEACH has
he lowest energy level which is approximately 24 J. The energy lev-
ls of EEUC and CHEF are nearly identical and approximately equal
o 38 J. On the other hand, EAUCF has the highest energy level which
s approximately 40 J. This result is parallel to the results which are
nferred from FND and HNA metrics.

.2. Scenario 2

In this scenario, the base station is located at the center of the
ireless sensor network just like in Scenario 1. However, the CHEF,

EUC and EAUCF cluster-heads use the EEUC multi-hop routing pro-
ocol to forward their data packets rather than directly transmitting
hem to the base station. By comparing the results of Scenarios 1
nd 2, the impact of using a multi-hop routing protocol instead of
irect routing can be identified. The detailed configuration of this
cenario is illustrated in Table 5.

The maximum competition radius is set to 40 and 70 m for EEUC

nd EAUCF respectively. These are the optimal maximum compe-
ition radius values for this scenario. After WSN  is deployed, the

aximum distance to base station is calculated as approximately
29.42 m.  Table 6 indicates the results of Scenario 2.

able 5
onfiguration of Scenario 2.

Parameter Value

Network size 200 × 200 m
Base station location (100, 100) m
Number of sensor nodes 100
Initial energy 1 J
Data packet size 4000 bits
�amp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation ratio 10%
EEUC 728 777 39.96
EAUCF 758 830 41.19

As shown in Table 6, EAUCF outperforms LEACH, CHEF and EEUC
considering FND and HNA metrics. LEACH has the lowest perfor-
mance, as in Scenario 1. In the first scenario, the FND values of CHEF
and EEUC are close to each other. However, in this scenario EEUC is
23.2% better than CHEF considering the FND metric. Their HNA per-
formances are still close to each other. EAUCF is 93.4% more efficient
than LEACH, 26.5% more efficient than CHEF and 4.1% more efficient
than EEUC according to the FND metric. If the HNA metric is con-
sidered for evaluation, the performance of EAUCF is 19.4% better
than LEACH, 8.5% better than CHEF and 6.8% better than EEUC.

In this scenario, the LEACH again shows the lowest performance,
because the reasons for low performance in the first scenario also
apply to this scenario. The results of this scenario clearly indicate
that unequal clustering algorithms, which are EEUC and EAUCF,
perform better than LEACH and CHEF when the multi-hop routing
protocol is used. This is because the batteries of the sensor nodes
that are closer to the base station deplete faster. However, EEUC and
EAUCF handle this situation by assigning smaller cluster sizes to the
sensor nodes which are closer to the base station. On the other hand,
CHEF cannot perform as well as EEUC and EAUCF, because it does
not consider the hot spots problem. However, when CHEF’s cluster-
heads use the EEUC routing protocol instead of forwarding directly
to the base station, it performs slightly better. Since EAUCF con-
siders the energy level of the tentative cluster-heads during cluster
radius calculation, the performance of EAUCF is considerably better
than EEUC’s.

Fig. 6 illustrates the distribution of the alive sensor nodes with
respect to the number of rounds for each algorithm. This figure
clearly shows that the proposed algorithm is more stable than the
other algorithms, because sensor node deaths begin later for EAUCF
and continue linearly until all sensor nodes die.

Fig. 7 shows the distribution of the number of clusters with
respect to the number of rounds for each algorithm. The LEACH,
CHEF and EEUC generate constant number of clusters until the
first node dies, while the number of clusters generated by EAUCF
increases. This is because the cluster radius is directly proportional
to the energy level of each tentative cluster-head. If the energy level
decreases, the cluster radius gets smaller. Therefore, the number of
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Fig. 6. Scenario 2: distribution of alive sensor nodes according to the number of
rounds for each algorithm.
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Fig. 7. Scenario 2: distribution of the number of clusters according to the number
of  rounds for each algorithm.

Table 7
Configuration of Scenario 3.

Parameter Value

Network size 200 ×200 m
Base station location (100, 100) m
Number of sensor nodes 200
Initial energy 1 J
Data packet size 4000 bits
� 100 pJ/bit/m2
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amp

Eelec 50 nJ/bit
Aggregation ratio 10%

ost energy-efficient algorithm in this scenario, because it has
he highest remaining energy level which is approximately 41 J.
he remaining energy levels of EEUC and CHEF are close to EAUCF.
n the other hand, LEACH has the lowest remaining energy level
hich is approximately 28 J. These results are parallel to the results

nferred from the FND and HNA metrics.

.3. Scenario 3

In this scenario, the base station is located at the center of the
ireless sensor network, as in Scenarios 1 and 2. The CHEF, EEUC

nd EAUCF cluster-heads use the EEUC multi-hop routing protocol
or data transmission. In this scenario, the density of the deployed
ensor nodes is twice that of Scenario 2. The aim of this scenario is
o test the behaviors of the clustering algorithms in different sensor
etwork topologies which have different numbers of deployed sen-
or nodes. The detailed configuration of this scenario is illustrated
n Table 7.

The maximum competition radius is set to 35 and 70 m for EEUC
nd EAUCF, respectively. These are the optimal maximum com-
etition radius values for this scenario. After the wireless sensor
etwork is deployed, the maximum distance to the base station

s calculated as approximately 137.93 m.  The simulation of this
cenario provides the results in Table 8.

As seen in Table 8, the simulation results of this scenario conform

ore or less with the simulation results of Scenario 2. However,

he HNA performance of LEACH is increased significantly in this
cenario with respect to Scenario 2. EEUC and EAUCF have the high-
st FND performance among the four clustering algorithms. LEACH

able 8
cenario 3: FND, HNA and total remaining energy.

Algorithm FND HNA Tot. rem. energy (J)

LEACH 409 876 82.73
CHEF 618 849 92.32
EEUC 753 839 90.41
EAUCF 748 942 96.25
Fig. 8. Scenario 3: distribution of alive sensor nodes according to the number of
rounds for each algorithm.

sensor nodes start to die earlier than the sensor nodes of the other
algorithms. EAUCF is 82.9% more efficient than LEACH and 21.0%
more efficient than CHEF considering the FND metric. The HNA per-
formance of EAUCF is 7.5% higher than LEACH, that of CHEF 11.0%
and that of EEUC 12.3%.

In this scenario, the FND performance of LEACH is significantly
lower than the other algorithms. The FND performances of LEACH
in Scenarios 1 and 2 are close to the performance in this scenario.
The reasons for this low performance, which were provided in the
former scenarios, are also valid for this scenario. Unequal clustering
algorithms EEUC and EAUCF outperform LEACH and CHEF consid-
ering the FND metric, because they handle the hot spots problem
when the multi-hop routing protocol is used for data transmission.
If the HNA metric is considered, EAUCF performs slightly better than
CHEF and EEUC in densely deployed sensor networks. In addition
to this, LEACH’s HNA performance is remarkable in this scenario,
but still lower than the performance of EAUCF.

Fig. 8 shows the distribution of the alive sensor nodes according
to the number of rounds for each simulated algorithm. As seen in
this figure, the number of sensor nodes of the EAUCF algorithm is
significantly greater than the other algorithms when the number of
alive sensor nodes is 100. This situation implies that EAUCF keeps
the wireless sensor network stable for longer time than the other
algorithms.

The last column of Table 8 shows the total remaining energy lev-
els for each algorithm at round 500. EAUCF has the highest energy
level among all of the simulated algorithms, at approximately 96 J.
In Scenarios 1 and 2, the remaining energy level of CHEF is nearly
the same as that of EEUC. However, in this scenario CHEF has a
higher remaining energy level, which is approximately 92 J. The
sensor nodes of LEACH consumed much more energy up to round
500 than the other algorithms for this scenario.

5.4. Scenario 4

In this scenario, the base station is located at (100, 250) m which
is outside of the WSN. This is different from Scenarios 1, 2, and 3
in which the base stations are located at the center. If the results of
Scenarios 2 and 4 are compared, it can be seen how the location of
the base station affects the results of the simulations. The detailed
configuration of this scenario is illustrated in Table 9.

In this scenario, the optimal maximum competition radius
values are estimated as 60 and 110 m for EEUC and EAUCF, respec-
tively. After WSN  is deployed, the maximum distance to base
station is calculated as approximately 260.28 m. The simulation of
this scenario yields the results in Table 10.
As seen in Table 10,  the values of the FND and HNA metrics
for each algorithm have decreased with respect to the earlier sce-
narios. This is because the base station is located outside of the
wireless sensor network. Thus, the cluster-heads consume much
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Table 9
Configuration of Scenario 4.

Parameter Value

Network size 200 × 200 m
Base station location (100, 250) m
Number of sensor nodes 200
Initial energy 1 J
Data packet size 4000 bits
�amp 100 pJ/bit/m2

Eelec 50 nJ/bit
Aggregation ratio 10%

Table 10
Scenario 4: FND, HNA and total remaining energy.

Algorithm FND HNA Tot. rem. energy (J)

LEACH 173 339 27.18
CHEF 156 420 43.67
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EEUC 342 423 44.68
EAUCF 397 445 46.47

ore energy in transmitting their data packets to the base station.
n this scenario, EAUCF has outperformed LEACH, CHEF and EEUC
onsidering both FND and HNA metrics. CHEF has the lowest FND
erformance while LEACH has the lowest HNA performance. If the
ND metric is considered, EAUCF is more efficient than LEACH by
29.5%, CHEF by 154.5% and EEUC by 16.1%. On the other hand, if
he HNA metric is considered, the performance of EAUCF is greater
han LEACH by 31.3%, CHEF by 6.0% and EEUC by 5.2%.

In this scenario, unequal clustering algorithms outperform
EACH and CHEF considering the FND metric. This implies that
f smaller cluster-head radius values are assigned to the cluster-
eads closer to the base station, the sensor node deaths can be
elayed. This is the key observation in all of the scenarios. As it

s also observed in the former scenarios, the radius calculation
pproach of EAUCF makes it perform better than EEUC. The results
f this simulation show that unequal clustering approaches per-
orm better even if the base station is located outside of the wireless
ensor network. CHEF shows a remarkable HNA performance in this
cenario, but its FND performance is the lowest. CHEF is a cluster-
ng algorithm which assigns a static cluster-head radius to all its
luster-heads. Therefore, it cannot handle the hot spots problem.
onsequently, the sensor nodes start to die earlier than with EEUC
nd EAUCF which are unequal clustering algorithms.

Fig. 9 shows the distribution of the alive sensor nodes with
espect to the number of rounds for each simulated algorithm. As
een in this figure, the sensor nodes of LEACH and CHEF start to

ie in the earlier rounds. The sensor node deaths for EAUCF start

ater than with all the other algorithms. EAUCF provides at least
00 stable rounds for this particular WSN.
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ig. 9. Scenario 4: distribution of alive sensor nodes according to the number of
ounds for each algorithm.
Fig. 10. Scenario 4: distribution of the number of clusters according to the number
of  rounds for each algorithm.

The distribution of the number of clusters with respect to the
number of rounds for each algorithm is depicted on a fast line
chart in Fig. 10.  CHEF generates the highest number of clusters at
the earlier rounds. On the other hand, EAUCF generates the lowest
number of cluster-heads in the beginning. As the number of rounds
increases, EAUCF starts to generate more cluster-heads until first
node dies. This approach helps EAUCF to delay the sensor node
deaths up to round 400.

Total remaining energy levels at round 250 for each algorithm
are given in the last column of Table 10.  EAUCF has the high-
est energy level, which is approximately 46 J. This data represents
EAUCF as the most energy-efficient algorithm for this scenario.
The remaining energy levels of CHEF and EEUC are close to each
other. As it is also observed in the first scenario, LEACH consumes
considerably more energy than the other algorithms.

6. Conclusion

The network relay traffic increases while getting closer to
the base station in multi-hop WSNs. Therefore, the sensor nodes
close to the base station tend to die earlier. In this paper, an
energy-aware fuzzy unequal clustering algorithm, namely EAUCF,
is introduced to solve this hot spots problem. The radius adjustment
mechanism of this algorithm solves the problem by reducing the
intra-cluster work of the cluster-heads closer to the base station.
EAUCF aims to distribute the workload among all sensor nodes
evenly. In order to achieve this goal, it mostly focuses on assigning
appropriate cluster-head competition ranges to the sensor nodes.
EAUCF calculates the competition radius values of tentative cluster-
heads by considering their remaining energy and distance to the
base station.

According to the simulation results, EAUCF has a better perfor-
mance compared to LEACH, CHEF and EEUC. In all of the scenarios
except Scenario 3, the sensor nodes that are clustered with EAUCF
start to die later than the sensor nodes that are clustered with other
algorithms. In Scenario 3, EEUC and EAUCF sensor nodes start to die
in nearly the same round.

EAUCF outperforms all of the algorithms when the HNA met-
ric is used in evaluation. This result implies that the workload is
distributed evenly among all sensor nodes and the sensor nodes
tend to die later within the lifetime of the WSN. Moreover, in all of
the scenarios the total remaining energy level of EAUCF at a certain
round is higher than with the other algorithms. Therefore, EAUCF is
more energy-efficient than the other tested clustering algorithms.
As a result of these experiments, it is concluded that EAUCF is a sta-
ble and energy-efficient clustering algorithm for wireless sensor

networks.

EAUCF is designed for WSNs that have stationary sensor nodes.
In future work, the fuzzy unequal clustering approach of the
algorithm can be extended for handling mobile sensor nodes. In



ft Com

c
t
a
s
p

R

[

[

[

[

H. Bagci, A. Yazici / Applied So

luster-head competition, only the residual energy and the distance
o the base station of the tentative cluster-heads are taken into
ccount. Some additional parameters such as node degree, den-
ity and local distance may  also be utilized to further improve the
erformance of EAUCF.

eferences

[1] I.F. Akyildiz, W.  Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor
networks: a survey, Computer Networks 38 (2002) 393–422.

[2] O. Younis, M.  Krunz, S. Ramasubramanian, Node clustering in wireless sensor
networks: recent developments and deployment challenges, IEEE Network 20
(2006) 20–25.

[3] C.E. Perkins, E.M. Royer. Ad hoc networking. The Ad Hoc on-demand distance-
vector protocol, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001, pp. 173–219.

[4] E. Belding-Royer, Hierarchical routing in ad hoc mobile networks, Wireless
Communications and Mobile Computing 2 (2002) 515–532.

[5]  M.  Lotfinezhad, B. Liang, Effect of partially correlated data on clustering in wire-

 
 

 

less  sensor networks, in: Proc. of the IEEE International Conference on Sensor
and Ad Hoc Communications and Networks (SECON), Citeseer, 2004.

[6] C. Li, M.  Ye, G. Chen, J. Wu,  An energy-efficient unequal clustering mechanism
for wireless sensor networks, in: IEEE International Conference on Mobile Ad
Hoc and Sensor Systems Conference, 2005, p. 8.

[

[

puting 13 (2013) 1741–1749 1749

[7] T. Shu, M.  Krunz, S. Vrudhula, Power balanced coverage-time optimization for
clustered wireless sensor networks, in: Proceedings of the 6th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing, ACM, 2005,
p.  120.

[8] W.  Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communi-
cation protocol for wireless microsensor networks, in: Proceedings of the 33rd
Hawaii International Conference on System Sciences, vol. 8, Citeseer, 2000, p.
8020.

[9] J. Kim, S. Park, Y. Han, T. Chung, CHEF: cluster head election mechanism using
fuzzy logic in wireless sensor networks, in: Proceedings of the ICACT, 2008, pp.
654–659.

10] I. Gupta, D. Riordan, S. Sampalli, Cluster-head election using fuzzy logic for
wireless sensor networks, in: Proceedings of the 3rd Annual Communication
Networks and Services Research Conference, 2005, pp. 255–260.

11] H. Ali, W.  Shahzad, F. Khan, Energy-efficient clustering in mobile ad-hoc
networks using multi-objective particle swarm optimization, Applied Soft
Computing 12 (2012) 1913–1928.

12] H. Bagci, A. Yazici, An energy aware fuzzy unequal clustering algorithm for
wireless sensor networks, in: Proceedings of the IEEE International Conference
on Fuzzy Systems, 2010.

13] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, Addison-

Wesley, Reading, MA, 2001.

14] M.  Handy, M.  Haase, D. Timmermann, Low energy adaptive clustering hierarchy
with deterministic cluster-head selection, in: IEEE MWCN, Citeseer, 2002.

15] F. Kuhn, T. Moscibroda, R. Wattenhofer, Initializing newly deployed ad hoc and
sensor networks, Proc. ACM MOBICOM, Sept. 2004, pp. 260–274.


	An energy aware fuzzy approach to unequal clustering in wireless sensor networks
	1 Introduction
	2 Related work
	3 Preliminaries
	4 EAUCF clustering algorithm
	5 Simulation results
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenario 3
	5.4 Scenario 4

	6 Conclusion
	References


